A New Approach for Rowhammer Attacks

Rui Qiao
Stony Brook University
rugiao @cs.stonybrook.edu

Abstract—Rowhammer is a hardware bug identified in recent
commodity DRAMs: repeated row activations can cause bit flips
in adjacent rows. Rowhammer has been recognized as both a
reliability and security issue. And it is a classic example that lay-
ered abstractions and trust (in this case, virtual memory) can be
broken from hardware level. Previous rowhammer attacks either
rely on rarely used special instructions or complicated memory
access patterns. In this paper, we propose a new approach for
rowhammer that is based on x86 non-temporal instructions. This
approach bypasses existing rowhammer defense and is much
less constrained for a more challenging task: remote rowhammer
attacks, i.e., triggering rowhammer with existing, benign code.
Moreover, we extend our approach and identify libc memset
and memcpy functions as a new rowhammer primitive. Qur
discussions on rowhammer protection suggest that it is critical
to understand this new threat to be able to defend in depth.

I. INTRODUCTION

Rowhammer is a kind of DRAM disturbance error: repeated
DRAM row activations can cause bit flips in adjacent rows
[15]. As a DRAM hardware bug, rowhammer is closely related
to DRAM organization. DRAM consists of a two dimensional
array of cells: the rows and columns are used for addressing a
cell. For each DRAM cell, the charged or uncharged state of
its capacitor is used to denote a single bit of stored value. In
order to access a cell, its row needs to be activated in order to
be copied to a row buffer. However, repeatedly activating a row
can cause cells at adjacent rows discharge at an accelerated
rate. If a cell state changes from charged to uncharged before
it is refreshed, the bit has flipped. This phenomenon is widely
recognized as the “rowhammer” problem.

The rowhammer problem exists in recent commodity
DRAM chips and mostly results from the design/process
limitations for sub 40 nm memory technology such as DDR3
[15]: as the chip density increases, the cells become smaller
and the capacitors can hold less charge. The cells are also
closer. Therefore the voltage fluctuations when activating a
row are more likely to affect adjacent rows and finally result
in bit flips. It has been shown that 110 out of 129 recent
DRAM modules from three major DRAM manufactures are
susceptible to the rowhammer problem [15].

Rowhammer was first considered as a reliability issue which
may result in data corruption, but later it has been shown to
also be a security issue [17]. Two exploits were developed:
the first one gains kernel privilege by causing bit flips in
page table entries (PTE) of an unprivileged, malicious process.
Specifically, the changed PTE may point one of the malicious
process’s writable page to a physical frame containing page

*This work was supported in part by grant from ONR (N00014-15-1-2378).

Mark Seaborn
Google
mseaborn @ google.com

table, and write access to page tables enables attacker to
control the whole physical memory. The second exploit is
a sandbox escape by causing bit flips in the instructions
enforcing control-flow integrity [17].

The key challenge of triggering rowhammer is to reliably
and frequently cause DRAM row activations. However, CPU
cache can prevent DRAM accesses (and therefore row activa-
tions). Previous rowhammer approaches either rely on the x86
CLFLUSH instruction [15], or use carefully selected memory
access patterns to evict cache lines [9], [10]. Therefore,
rowhammer attacks are usually assumed by software level
defenses to be based on these approaches.

In this paper, we propose new approaches for triggering
rowhammer. We further discuss their security implications un-
der two different threat models. In the first model, the program
code is from untrusted sources, and may be sandboxed. The
second model only allows benign code to be executed, but
the program may be exposed to untrusted data inputs. We
show that rowhammer attacks can be performed with our new
approaches. Specifically, we make the following contributions:

e A new rowhammer method without CLFLUSH. Other
than existing methods, we demonstrate that rowhammer
can also be triggered with non-temporal store instructions.
This method can be less constrained and more suitable
for some scenarios.

o A new rowhammer primitive. We identify a new rowham-
mer primitive that extends our non-temporal store based
method. Specifically, libc functions memset and memcpy
are found capable of rowhammer. This can be convenient
because of their wide usage.

o Exploit with untrusted code. We develop an exploit that
can escape from a sandbox, bypassing existing appli-
cation layer rowhammer defense. We highlight the dif-
ferences of the exploit as compared to the CLFLUSH
based approach, and illustrate how we overcome these
challenges.

e Remote rowhammer attacks. We describe the possible
remote rowhammer attacks, i.e., triggering rowhammer
with malicious inputs but benign code, based on the new
rowhammer methods. Compared with user level software
based memory corruptions which only affect the current
process, one distinguishing feature of rowhammer is that
bit flips can be caused in other processes or kernel.

codela: codelb:
mov (X), %eax mov (X), %eax
mov (Y), %eax clflush (X)
clflush (X)
clflush (Y)
mfence mfence
jmp codela jmp codelb

Fig. 1. Rowhammer with CLFLUSH
II. BACKGROUND

A. DRAM

From a low level, the basic unit of storing information in
dynamic random-access memory (DRAM) is a cell. It consists
of a capacitor and a transistor. The capacitor can either be
charged or uncharged, representing a binary data value. And
the transistor is used for accessing the cell.

From a high level, a DRAM module can have one or
two ranks, where one rank corresponds to one side of the
dual inline memory modules (DIMMs). Each rank is divided
into banks, which can be accessed concurrently to increase
parallelism. In each bank, cells are organized into rows and
columns. To access a particular cell, the corresponding row is
first activated, and then data is read into the row buffer of the
bank, and the accesses are served from row buffer.

DRAM cells lose charge gradually. Therefore, they need
to be recharged periodically to keep the stored value. This
process is called refresh. The time period for a cell to lose
data because of discharging is called retention time, which is
specified by DDR3 DRAM specification [12] to be at least 64
ms. A refresh must happen on every row within this time.

In most systems, memory controller uses physical rather
than virtual addresses for selecting the underlying rank, bank,
row, and column of the DRAM. Although not documented,
this mapping of some CPUs can be reverse engineered [16].

B. Rowhammer: The DRAM Bug

As discussed, rowhammer can be triggered if a DRAM row
is repeatedly activated. Figure 1 shows the code snippets used
for rowhammer from the original paper [15]. X and Y are
addresses that belong to the same bank, but different rows.
Note that codela can induce bit flips, while codelb cannot.
This is because in codelb, if a single row (which X belongs
to) is repeatedly accessed, the data will be served from the
row buffer since there is no need to reactivate the row. On
the other hand, codela alternates the accesses to two different
rows (but on the same bank). Therefore, the next memory read
is not from the same row, and the content of the row buffer
cannot be used. This essentially forces the two rows to be
activated in turn, and finally there can be bit flips in nearby
rows of either of the activated rows. From this we can see
that the key for rowhammering is that a row being repeatedly
activated, rather than accessed.

The frequency and number of row activations are important
factors for successful rowhammer. We refer to the time period
between two activations of the same DRAM row as activation
interval. When the retention time is the standard 64 ms, the
activation interval has to be at most 500 ns to induce bit flips
[15], and there has to be at least 139K row activations.

III. NON-TEMPORAL STORES: A NEW METHOD FOR
ROWHAMMER

In this section, we introduce the involved instructions, chal-
lenges, and implementation details for our new rowhammer
method.

A. Non-temporal Instructions

In computation, data references can have different patterns.
Some are temporal: data will be accessed again soon in
future. Some are spatial: data in adjacent locations will be
accessed. And some are non-temporal: data is referenced
just once and not again in the near future. As most data
accesses exhibit either temporal or spatial locality, caches are
introduced to effectively improve performance. However, non-
temporal accesses could pollute cache and harm performance.

To address this problem, non-temporal instructions were in-
troduced by CPU vendors for supporting cacheability control.
Once non-temporal data references are expected, programmers
or compilers can use these non-temporal instructions to mini-
mize cache pollution. On the other hand, because their cache
bypass characteristics are desirable, we explore the possibility
of using them for rowhammer.

Non-temporal instructions can be loads, stores and
prefetches. The only x86 non-temporal load instruction
MOVNTDQA is not useful for rowhammer because it requires
the underlying memory to be write combining (WC) type to
bypass cache. The only x86 non-temporal prefetch instruc-
tion PREFETCHNTA is not helpful either, because it may
(pre)fetch data into L2 cache from L3 cache, therefore not
reliably generating DRAM accesses and hence row activations.

We can use non-temporal stores for rowhammer because
they treat target memory as uncached “write combining (WC)”
type [3]'. There are a handful of x86 non-temporal store
instructions, some examples are:

e MOVNTI: this instruction moves a 32-bit or 64-bit inte-
ger from source register operand to destination memory
operand, with a non-temporal hint.

e MOVNTDQ: similarly, this instruction stores a 128-bit
value from a SSE register to memory using a non-
temporal hint.

B. Write-Combining Buffers

Although non-temporal stores serve as a basis for our
rowhammer method, a straight-forward implementation would
not work due to write-combining buffers.

As discussed, the memory used by non-temporal stores are
treated as “write combining (WC)” type [3]. Therefore, writes
may be delayed and combined in the write-combining buffer
(WC buffer) to reduce DRAM accesses (Figure 2). Specif-
ically, non-temporal writes to the same address are usually
combined at WC buffer, and only the last write goes through
to the DRAM chip. As a result, the row activation frequency
has been greatly reduced and the rate is not sufficient for

I'This means even if the underlying memory is cached, it is treated as WC
type and therefore uncached. This is different from MOVNTDQA where the
underlying memory has to be WC type.

DRAM
t

Write-Combining

Cache Buffers

cached memory non-temporal
accesses stores

CPU

Fig. 2. Cached and non-temporal memory accesses

Execution Unit

code2b:
movnti %eax, (X)
movnti %eax, (Y)
mov %eax, (X)
mov %eax, (Y)
jmp code2b

code2a:
movnti %eax, (X)
movnti %eax, (Y)

jmp code2a

Fig. 3. Rowhammer with non-temporal stores

rowhammer. This is what happened when a straight-forward
implementation, such as code2a of Figure 3 is used.

In order to make sure each non-temporal store goes through
to the DRAM chip, we need a way to flush the WC buffer.
We’ve found out this can be achieved by a following cached
memory access (either read or write) to the same address
where the non-temporal store instruction writes to. Code2b
of Figure 3 implements this and is effective for rowhammer.
C. Triggering Bit Flips

Another requirement for a successful rowhammer is to pick
addresses for memory accesses (hammering). As discussed in
Section II-B, the two (physical) addresses have to be mapped
to different rows but the same bank. To achieve this, we
reused the probabilistic approach adopted in rowhammer-test
[6]: (virtual) addresses are picked at random. Since for typical
DRAMs there are 8 banks, the probability of satisfying the
“same-bank-different-row” property is roughly 1/8. 2

To check for bit flips, a large portion of memory is
mapped and initialized. After the rowhammer attempts, they
are checked against the initial value. Using our new method,
we have repeatedly produced bit flips on a set of vulnerable
machines.

Note that because of their special property of bypassing
cache, non-temporal instructions have been conjectured as
a viable means for rowhammer [17]. However, none of the
previous works have shown their effectiveness or the key
details for triggering rowhammer [17], [7].

IV. EXPLOIT WITH UNTRUSTED CODE

As discussed, non-temporal stores can be used for rowham-
mering. In this section, we further investigate whether non-
temporal stores can induce bit flips that are useful for exploits.

We performed our case study on NaCl sandbox escape
exploit. The Google Native Client (NaCl) is a sandbox used
in Chrome browser to securely and efficiently run untrusted
native code in the context of a web application [18]. Escaping
from NaCl sandbox could lead to arbitrary code execution and

2Because each bank has many (e.g., 32K) rows, the probability that the two
addresses are in the same row of same bank is negligible.

andl $Oxffffffel, %$eax // make eax 32-byte aligned
addg %$rl5, %rax // add base register rlb
jmp *%rax // after a single bit flip => Jjmp *%rcx

Fig. 4. Sandbox escape example: originally the first two instructions constrain
the value of rax, so that the indirect jump at the third instruction is confined.
However, rowhammer induced bit flips may change the third instruction to
a different one: an indirect jump using an unrestricted register rcx, therefore
bypassing control flow restrictions. Note that the hardware layer bit flip has
changed validated, read-only code.

is therefore a serious exploit. We chose Chrome NaCl sandbox
because it validates untrusted software (before their execution)
with strict rules therefore representing a difficult case, and the
convenience to compare with the original exploit which is also
based on NaCl.

A. NaCl Sandbox Escape

Currently, CLFLUSH 1instruction used by most rowham-
mering has been forbidden by NaCl validator. However, non-
temporal store instructions are still allowed and can be used
in an exploit.> The major difference between CLFLUSH and
non-temporal store based schemes is that the former performs
repeated memory reads, while the latter needs repeated writes.
If we call the DRAM row where bit flip happens a victim row,
and the row where we perform memory accesses (to trigger
bit flips) an aggressor row, then in the case of non-temporal
store based rowhammer, we need to be able to write to the
aggressor row. In other words, the corresponding page should
have write permission, i.e., it should be a data page.

In the original NaCl sandbox escape exploit [17], repeated
reads of an aggressor row that contains code cause bit flips
in an adjacent victim row, which also contains code. If the
flipped bit happens to be one of the sandbox instructions that
constrain control flow, the instruction has therefore changed
to a different one, and the sandbox can be escaped. Figure 4
shows such an example. Although the bit flips are random
and may not result in the same instruction change as in
Figure 4, it has been shown that 13% of the possible changes
are exploitable [17]. And because the untrusted process is
“sprayed” with all such code, the probability that the bit flips
happen to these code is high.

In our new exploit, we want to use the same exploit
technique by triggering bit flips in sandboxing code. The key
is that the aggressor row should now contain data instead
of code (because obviously code is read-only and cannot be
written to by non-temporal stores), and it should be physically
adjacent to victim rows which contain code. This is especially
challenging when we want to reuse the probabilistic approach:
aggressor address pairs are picked at random. To ensure a high
probability of bit flips to happen in code, this requires the
aggressor data rows and victim code rows to be sufficiently
interleaved. Based on former understanding of DRAM phys-
ical address mapping [16], what we need is to influence the
OS so that large, physically contiguous memory are assigned
to interleaved code and data pages.

3We have reported our new rowhammer method and exploit to Google.
As a response, non-temporal instructions are also forbidden (or rewritten) in
latest NaCl implementation.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC . v v vnn i iaee it CCCCCCCC.CCCCCCC. v v veiinennnnnnn
DDDDDDDDDDDDDDDD . & v v v v v e e e e e e CCCCCCCC.CCCCCCCCCCCCCCCCCCCCCCC.wn v niiinnaanns
CCCCCCCC.CCCCCCC. v i i inniianann DDDDDDDDDDDDDDDDCCCCCCCC. CCCCCCCCeceeececeececccecece
DDDDDDDDDDDDDDDDCCCCCCCC.CCCCCCCCCCCCCCC.CCCCCCCDDDDDDDDDDDDDDDD. v v v e v e e e e e e a s
ccceeceC. e DDDDDDDDDDDDDDDDCCCCCCCCCCCCCCCC. . .C.CluCuniChnnnii i i i i i i e i e
€ € cceeeeecceccceecccecccececceccccece
DDDDDDDDDDDDDDDDCCCCCCCCCCCCCCCCCCCCCCCC. CCCCCCCDDDDDDDDDDDDDDDDCCCCCCCC. CCCCCCC
........ Cho v Dl i ittt it i i itie it e aa..... . CCCCCCCCCCCCCCCC
Fig. 5. Contiguous physical page frames and their assignment to code and
data pages

To get the desired mapping, a series of steps are taken:

1) Create high memory pressure and reserve most remain-
ing memory. We create high system memory pressure by
launching another process which maps a large chunk of
memory (and forces physical frame allocation). When
the “memory eater” program is running, start our NaCl
process, which first reserves most of the remaining
physical frames.

2) Allocate code with random physical frames. The NaCl
process then allocates memory for code in the following
fashion: right before a code chunk allocation request is
sent to the OS, it unmaps a random chunk from reserved
memory, i.e., release a random chunk of physical frames.
Because of the high memory pressure, it is very likely
that the following code allocation request will be served
with the just released page frames. And because the page
frames are random, once we repeat this process until half
of the reserved memory is allocated for code, they are
physically quite evenly distributed.

3) Allocate data with random physical frames. Finally we
allocate data from the remaining (half) reserved memory
using the same approach.

Before using this strategy on bare metal, we experimented
in a VM, and printed out whether each physical page frame
is assigned to code (“C”) or data (“D”). A very small portion
of this mapping is shown in Figure 5. We can see that code
pages and data pages are sufficiently interleaved in physical
address space.

Note that in our threat model (a malicious web application),
attackers do not have the freedom to run another normal
process on the target machine to create memory pressure.
However, this could still be achieved by embedding one or
more extra memory consuming NaCl modules on the same
web page (or JavaScript ArrayBuffers in multiple pages). Since
each NaCl module is allowed to use up to 4G of memory for
x86-64, sufficient memory pressure could be created.

With above setting, we have used the non-temporal stores
to trigger bit flips in code, and escaped the sandbox.

V. BIT FLIPS WITH BENIGN CODE

We discuss rowhammer under a different threat model
in this section. The “benign-code-untrusted-input” model is
first described in detail, and then the feasibility of different
rowhammer methods are compared. We continue by illustrat-
ing the more wide usage of non-temporal instructions and
how memset/memcpy functions can be used as a primitive
to simplify our rowhammer attempts. Finally, possible remote
rowhammer attacks are discussed.

A. Threat Model

Our threat model is as follows: We assume the DRAM of
the system is susceptible to the rowhammer bug. We assume
attackers do not have local access to a system, i.e., they
cannot run processes. We assume there is benign software
running on the system which does not deliberately compromise
system security. These software can be, but are not limited to
multimedia players, PDF file readers, Internet service servers,
or file compression utilities. We assume the benign software do
not contain software-based memory corruption vulnerabilities,
but if they do present, more sophisticated and powerful attacks
could be launched.

B. Rowhammer Methods

Several different approaches have been shown to be effective
for rowhammer. Based on the memory access properties, they
can be roughly classified as cached or uncached. The original
paper [15] uses uncached memory accesses and relies on
CLFLUSH instruction. In this paper, we have shown a new
uncached approach based on non-temporal store instructions.

Recently, cached memory accesses have also been shown
to have the capability of triggering rowhammer [9], [10].
The basic idea is to use a memory access pattern that can
effectively fill a cache set and evict cache lines therefore
resulting in DRAM access. While Aweke et al [9] used a
static pattern with native code, Daniel Gruss et al developed an
adaptive algorithm to work on more CPU microarchitectures,
and generated the pattern both with native code and JavaScript
[10].

Although not requiring special instructions, cached rowham-
mer methods need a complicated memory access pattern
to evict cache lines. While this is possible when attackers
can execute his own code, it is very difficult to induce the
access pattern only by feeding malicious inputs to existing
(benign) code, especially in a non-scripting environment.
Moreover, cached rowhammer methods require special system
settings/interfaces such as huge pages, or virtual to physical
address mapping (e.g., /proc/pid/pagemap of Linux) which are
not always available. And finally, it is not clear whether the
cache eviction technique can be applied to exclusive cache
schemes that are adopted, e.g., by AMD CPUs.

As a comparison, uncached approaches only need a simple
access pattern, do not require special system setting, and
are cache scheme independent. Therefore, they are much
less constrained. However, it is not possible without special
instructions. We therefore perform a study of availability of
rowhammer-capable instructions in real world software.

C. Rowhammer-Capable Instruction Availability

We performed a search of CLFLUSH and non-temporal
store instructions in Debian source code repository. We have
found that non-temporal stores are more widely used: in our
data set, 21 software packages contain non-temporal stores,
while only 7 packages contain CLFLUSH. Non-temporal
stores also present in a more diverse set of software: they
exist not only in OS kernels and compilers, but also in
window managers, boot loaders, and especially (10 different)

libc Newlib | uClibc Bionic Glibe musl | dietlibc
implementation (Android)

used in memset Y Y Y Y N N
/memcpy

non-temporal 256 120K 128K ~700K | N/A N/A
store execution bytes bytes bytes bytes

threshold size

rowhammer-ready Y N N N N/A N/A

. Fig. 6. Non-temporal stores in libc implementations
multimedia players. As multimedia player are usually well

exposed to untrusted inputs, they can be a convenient target.

Non-temporal stores present in many software probably
because they have great potential for memory access opti-
mizations. The ability of avoiding cache pollution offers new
opportunities for improving performance of some applications,
especially data-intensive ones such as multimedia players.

D. A New Rowhammer Primitive: memset/memcpy

Non-temporal stores also exist in an important piece of
software: the C library. Specifically, they are used in libc’s
memset(3) and memcpy(3) functions: when the filled/copied
data are not expected to be accessed soon, they are not stored
to cache.

This finding has important security implications. Since libc
is linked by virtually all software, if non-temporal stores are
used in the memset/memcpy implementations, and if rowham-
mer can be triggered by just calling memset or memcpy, almost
all software has the potential of rowhammering.

To understand the impact, we first analyzed the usage of
non-temporal stores in memset/memcpy in different imple-
mentations of libc, and under what scenarios they can be
executed. Figure 6 shows our results.

We have found that 4 out of 6 popular libc implementations
use non-temporal stores in memset/memcpy, including Glibc.
However, the non-temporal store instructions may not get
executed for all invocations of the functions. This is because
there can be alternative implementations inside the same mem-
set/memcpy function body, and the executed implementation
is usually based on the requested filling/copying size. This is
reasonable because preventing data from storing to cache is
most useful for large chunk of data movement: otherwise a
large portion of cache is polluted. When the moved data size
is small, on the other hand, there is no need to prevent data
store to cache because not much is polluted. Storing to cache
may even be beneficial: the small chunk of moved data may
turn out to be temporal and accessed soon.

As a result, there is usually a threshold value for each im-
plementation: if the requested size is larger, the non-temporal
store based version is executed. From Figure 6 we can see the
threshold varies from 256 bytes to around 700K bytes.

In order to use memset/memcpy for rowhammer, we need
a large size of data movement to execute the non-temporal
instructions within. However, a large data movement may take
longer time to complete and result in a lower hammering rate.
We have experimented with straight-forward memset/memcpy
hammering for different implementations, and successfully
triggered bit flips using the Newlib version. The code for
memset is shown in Figure 7, and using memcpy is very
similar. The dereferences of X and Y serve as normal cached
accesses after non-temporal stores to the same addresses.

code3:
memset(X, -1, 256);
*(volatile char *)X;
memset(Y, -1, 256);
*(volatile char *)Y;
goto code3;

Fig. 7. Rowhammer with memset

Due to a much larger latency, the straight-forward imple-
mentation for other libc implementations do not work. To have
an estimation of what is the largest size of data copy that is still
fast enough for rowhammer, we modified code3 of Figure 7
by changing the size argument of memset, and see if it can
induce bit flips. After a “manual” binary search, we found that
2KB is the magic number for our test machine.

To overcome the latency problem of large data movement,
one idea is to interrupt and cancel large data movement before
it is finished, and start new memset/memcpy. However, our
initial investigations of using signals and/or multi-threading
provided negative results: the hammering rate is still not high
enough.

We note that although it seems challenging and may take
more effort to trigger rowhammer using memset/memcpy
from other C libraries, at least all software using Newlib
should beware of memset/memcpy based rowhammer. These
include various embedded systems, the Red Hat GCC dis-
tribution, Cygwin, and Google’s Native Client*. Moreover,
memcpy/memset-like functions using non-temporal stores also
appear in other critical software such as OS kernels. For
example, the pagezero routine of FreeBSD fills zero to
page-sized memory using non-temporal stores [2], and the
__copy_user_nocache routine of Linux requires only 64
bytes to execute non-temporal stores [4].

E. Remote Rowhammer Attacks

Any program that can exhibit a memory access pattern such
as code2b in Figure 3 or code3 in Figure 7 may be vulnerable
to remote rowhammer attacks. In addition, other potentially
existing software vulnerabilities can be utilized by attackers
to alter the control flow to induce such pattern. As a result,
the following attacks could be launched.

a) Data Corruption Attacks. Rowhammer can be used to
induce bit flips in data pages, and critical user data can
be corrupted. This is especially the case for data intensive
applications, which pull massive data into memory.

The uniqueness of rowhammer is that it breaks memory
protection from hardware level. Therefore, it is possible that
the flipped bits belong to physical pages of another process.
In this case, attackers can corrupt data of a process even if it
is not directly exposed to malicious inputs. Therefore, this is
a new threat needs to be considered for server consolidation.

b) Denial of Service Attacks. Another possible attack is
denial of service. If bit flips happen at code, the underlying
instruction will change, and could result in various faults
when it is executed, and the process may terminate. On the

4NaCl has stopped using non-temporal instructions in their port of Newlib
as a mitigation to rowhammer.

other hand, it is also possible that bit flips occur at control
flow decision-making data, therefore program would follow a
different execution path.

Similarly, denial of service can happen to another process
or even the whole system, if one process is attacked.

VI. POSSIBLE DEFENSES

Since the introduction of the rowhammer problem, there
are different approaches proposed for prevention or mitiga-
tion. These approaches target different layers of a computing
system. In this section, we will discuss the techniques and
their effectiveness against rowhammer threats, including our
new method based on non-temporal stores.

A. Hardware Layer Assurance

At hardware level, measures can be taken at DRAM chips,
CPU memory controllers, BIOS which configures memory
controllers, or a combination of these components. The ben-
efits of hardware-based approaches are that they are generic
and agnostic of the specific rowhammer triggering methods.

Error-correcting code (ECC) can help mitigate rowhammer.
However, it is mostly used by servers due to a larger cost.
Moreover, ECC only provides limited detection/correction
ability when there are multiple bit flips [15].

The LPDDR4 standard describes a technique called target
row refresh (TRR) which identifies hot (frequently activated)
rows and refreshes their neighbors [14]. However, TRR sup-
port is only optional for LPDDR4, and it is not part of the
DDR4 standard [13]. Therefore, we cannot expect its broad
implementation in the next generation of DRAM. Another
related approach called probabilistic adjacent row activation
(PARA) was proposed, but has not yet seen adoption [15].

The current mitigation by PC vendors for rowhammer is
to double the refresh rate [8], [1]. Although this can reduce
the possibility of rowhammer, there is no guarantee [15]. In
addition, the patches require BIOS update, which are unlikely
to be performed by most of the end users.

B. System Layer Defenses

Based on the observation that rowhammer attempts result in
large number of last level cache misses, hardware performance
counters can be leveraged to detect and prevent rowhammer
attacks with a low overhead [11], [9]. Additionally, some
critical system interfaces such as pagemap [5] and huge pages
can be disabled to significantly increase the difficulty for cache
eviction based rowhammer.

C. Application Layer Mitigation

Since lower layer defenses may not be widely deployed,
to defend in depth, application layer mitigations should be
applied whenever possible.

Perhaps the easiest mitigation at application layer is to for-
bid the presence or execution of rowhammer-capable instruc-
tions. Benign code should consider alternative ways of im-
plementation and release patches to replace instructions such
as CLFLUSH and non-temporal stores. For untrusted code
which is sandboxed, the validator needs to make sure these
instructions are not present. Although not a complete solution,

this will force attackers to use eviction-based rowhammer,
which is more complicated and sometimes more constrained.

VII. CONCLUSION

In this paper, we have demonstrated a new approach for
rowhammer based on x86 non-temporal store instructions. We
extended our findings and identified libc’s memset and mem-
cpy functions as a new rowhammer primitive. We developed
an exploit that bypasses existing application layer defense and
showed that our approach is practical. Moreover, unlike pre-
vious approaches, our approach does not require complicated
memory access patterns, special system interfaces, or rarely
used instructions. We introduced remote rowhammer threats
that is more feasible with our approach, and finally discussed
and analyzed the benefits and limitations of defenses deployed
at different hardware and software layers.

REFERENCES
[1] About the security content of Mac EFI security update 2015-001. https:
//support.apple.com/en-us/HT204934.

[2] FreeBSD source file.
support.S.

[3] Intel 64 and IA-32 architectures software developer’s manual.
http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-manual-325462.pdf.

http://fxr.watson.org/fxr/source/amd64/amd64/

[4

Linux source file. http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.
git/tree/arch/x86/lib/copy_user_64.S.

[5

=

pagemap: do not leak physical addresses to non-privileged userspace.
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=
ab676b7d6fbf4b294bf198fb27adeSb0e865¢7ce.

[6

=

Program for testing for the DRAM rowhammer problem. https://github.
com/google/rowhammer-test.

[7

—

Research using JIT to trigger rowham-
mer. http://xlab.tencent.com/en/2015/06/09/
Research-report-on-using-JIT-to-trigger-RowHammer/.

report on

[8] Row hammer privilege escalation.
product_security/row_hammer.

[9] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and
T. Austin. ANVIL: Software-based protection against next-generation
rowhammer attacks. In ASPLOS, 2016.

[10] D. Gruss, C. Maurice, and S. Mangard. = Rowhammer.js: A re-
mote software-induced fault attack in javascript. arXiv preprint
arXiv:1507.06955, 2015.

[11] N. Herath and A. Fogh. These are not your grand daddy’s CPU
performance counters: CPU hardware performance counters for security.
In Black Hat, 2015.

[12] JEDEC. Standard No. 79-3F. DDR3 SDRAM Specification. July 2012.
[13] JEDEC. Standard No. 79-4A. DDR4 SDRAM Specification. Nov. 2013.
[14] JEDEC. Standard No. 209-4A. LPDDR4 Specification. Nov. 2015.

[15] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu. Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors. In ISCA, 2014.

[16] M. Seaborn. How physical addresses map to rows and
banks in DRAM. http://lackingrhoticity.blogspot.com/2015/05/
how-physical-addresses-map-to-rows-and-banks.html.

[17] M. Seaborn and T. Dullien. Exploiting the DRAM rowhammer bug to

gain kernel privileges. http://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html, 2015.

[18] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,

S. Okasaka, N. Narula, and N. Fullagar. Native client: A sandbox for
portable, untrusted x86 native code. In IEEE S&P, 2009.

https://support.lenovo.com/us/en/

https://support.apple.com/en-us/HT204934
https://support.apple.com/en-us/HT204934
http://fxr.watson.org/fxr/source/amd64/amd64/support.S
http://fxr.watson.org/fxr/source/amd64/amd64/support.S
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/x86/lib/copy_user_64.S
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/x86/lib/copy_user_64.S
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://github.com/google/rowhammer-test
https://github.com/google/rowhammer-test
http://xlab.tencent.com/en/2015/06/09/Research-report-on-using-JIT-to-trigger-RowHammer/
http://xlab.tencent.com/en/2015/06/09/Research-report-on-using-JIT-to-trigger-RowHammer/
https://support.lenovo.com/us/en/product_security/row_hammer
https://support.lenovo.com/us/en/product_security/row_hammer
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

	I Introduction
	II Background
	II-A DRAM
	II-B Rowhammer: The DRAM Bug

	III Non-temporal Stores: A New Method for Rowhammer
	III-A Non-temporal Instructions
	III-B Write-Combining Buffers
	III-C Triggering Bit Flips

	IV Exploit with Untrusted Code
	IV-A NaCl Sandbox Escape

	V Bit Flips with Benign Code
	V-A Threat Model
	V-B Rowhammer Methods
	V-C Rowhammer-Capable Instruction Availability
	V-D A New Rowhammer Primitive: memset/memcpy
	V-E Remote Rowhammer Attacks

	VI Possible Defenses
	VI-A Hardware Layer Assurance
	VI-B System Layer Defenses
	VI-C Application Layer Mitigation

	VII Conclusion
	References

