
Phases of Syntax Analysis

1. Identify the words: Lexical Analysis.

Converts a stream of characters (input program) into a stream of tokens.

Also called Scanning or Tokenizing.

2. Identify the sentences: Parsing.

Derive the structure of sentences: construct parse trees from a stream of tokens.

Lexical Analysis

Convert a stream of characters into a stream of tokens.

• Simplicity: Conventions about “words” are often different from conventions about “sentences”.

• Efficiency: Word identification problem has a much more efficient solution than sentence identification problem.

• Portability: Character set, special characters, device features.

Terminology

• Token: Name given to a family of words.

e.g., integer constant

• Lexeme: Actual sequence of characters representing a word.

e.g., 32894

• Pattern: Notation used to identify the set of lexemes represented by a token.

e.g., [0 − 9]+

Terminology

A few more examples:

Token Sample Lexemes Pattern
while while while

integer constant 32894, -1093, 0 [0-9]+
identifier buffer size [a-zA-Z]+

Patterns

How do we compactly represent the set of all lexemes corresponding to a token?
For instance:

The token integer constant represents the set of all integers: that is, all sequences of digits (0–9), preceded by an optional

sign (+ or −).

Obviously, we cannot simply enumerate all lexemes.

Use Regular Expressions.

Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet Σ.

• a: stands for the set {a} that contains a single string a.

⊲ Analogous to Union.

• ab: stands for the set {ab} that contains a single string ab.

⊲ Analogous to Product.

⊲ (a|b)(a|b): stands for the set {aa, ab, ba, bb}.

• a∗: stands for the set {ǫ, a, aa, aaa, . . .} that contains all strings of zero or more a’s.

⊲ Analogous to closure of the product operation.

Regular Expressions

Examples of Regular Expressions over {a, b}:

• (a|b)∗: Set of strings with zero or more a’s and zero or more b’s:

{ǫ, a, b, aa, ab, ba, bb, aaa, aab, . . .}

• (a∗b∗): Set of strings with zero or more a’s and zero or more b’s such that all a’s occur before any b:

{ǫ, a, b, aa, ab, bb, aaa, aab, abb, . . .}

• (a∗b∗)∗: Set of strings with zero or more a’s and zero or more b’s:

{ǫ, a, b, aa, ab, ba, bb, aaa, aab, . . .}

Language of Regular Expressions

Let R be the set of all regular expressions over Σ. Then,

• Empty String: ǫ ∈ R

• Unit Strings: α ∈ Σ ⇒ α ∈ R

• Concatenation: r1, r2 ∈ R ⇒ r1r2 ∈ R

• Alternative: r1, r2 ∈ R ⇒ (r1 | r2) ∈ R

• Kleene Closure: r ∈ R ⇒ r∗ ∈ R

Regular Expressions

Example: (a | b)∗

L0 = {ǫ}

L1 = L0 · {a, b}

= {ǫ} · {a, b}

= {a, b}

L2 = L1 · {a, b}

= {a, b} · {a, b}

= {aa, ab, ba, bb}

L3 = L2 · {a, b}

...

L =
∞⋃

i=0

Li = {ǫ, a, b, aa, ab, ba, bb, . . .}

Semantics of Regular Expressions

Semantic Function L : Maps regular expressions to sets of strings.

L(ǫ) = {ǫ}

L(α) = {α} (α ∈ Σ)

L(r1 | r2) = L(r1) ∪ L(r2)

L(r1 r2) = L(r1) · L(r2)

L(r∗) = {ǫ} ∪ (L(r) · L(r∗))

Computing the Semantics

L(a) = {a}

L(a | b) = L(a) ∪ L(b)

= {a} ∪ {b}

= {a, b}

L(ab) = L(a) · L(b)

= {a} · {b}

= {ab}

L((a | b)(a | b)) = L(a | b) · L(a | b)

= {a, b} · {a, b}

= {aa, ab, ba, bb}

Computing the Semantics of Closure

Example: L((a | b)∗)
= {ǫ} ∪ (L(a | b) · L((a | b)∗))

L0 = {ǫ} Base case

L1 = {ǫ} ∪ ({a, b} · L0)

= {ǫ} ∪ ({a, b} · {ǫ})

= {ǫ, a, b}

L2 = {ǫ} ∪ ({a, b} · L1)

= {ǫ} ∪ ({a, b} · {ǫ, a, b})

= {ǫ, a, b, aa, ab, ba, bb}

...

L((a | b)∗) = L∞ = {ǫ, a, b, aa, ab, ba, bb, . . .}

Another Example

L((a∗
b

∗)∗) :

L(a∗) = {ǫ, a, aa, . . .}

L(b∗) = {ǫ, b, bb, . . .}

L(a∗b∗) = {ǫ, a, b, aa, ab, bb,

aaa, aab, abb, bbb, . . .}

L((a∗b∗)∗) = {ǫ}

∪{ǫ, a, b, aa, ab, bb,

aaa, aab, abb, bbb, . . .}

∪{ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, bba, bbb, . . .}

.

.

.

= {ǫ, a, b, aa, ab, ba, bb, . . .}

Regular Definitions

Assign “names” to regular expressions.
For example,

digit −→ 0 | 1 | · · · | 9
natural −→ digit digit∗

Shorthands:

• a+: Set of strings with one or more occurrences of a.

• a?: Set of strings with zero or one occurrences of a.

Example:

integer −→ (+|−)?digit+

Regular Definitions: Examples

float −→ integer . fraction

integer −→ (+|−)? no leading zero

no leading zero −→ (nonzero digit digit∗) | 0

fraction −→ no trailing zero exponent?

no trailing zero −→ (digit∗ nonzero digit) | 0
exponent −→ (E | e) integer

digit −→ 0 | 1 | · · · | 9
nonzero digit −→ 1 | 2 | · · · | 9

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions specify sets of strings over an input alphabet.

• They can hence be used to specify the set of lexemes associated with a token.

⊲ Used as the pattern language

How do we decide whether an input string belongs to the set of strings specified by a regular expression?

Using Regular Definitions for Lexical Analysis

Q: Is ababbaabbb in L(((a∗b∗)∗)?
A: Hm. Well. Let’s see.

L((a∗b∗)∗) = {ǫ}

∪{ǫ, a, b, aa, ab, bb,

aaa, aab, abb, bbb, . . .}

∪{ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, bba, bbb, . . .}

...

= ???

Recognizers

Construct automata that recognize strings belonging to a language.

• Finite State Automata ⇒ Regular Languages

• Push Down Automata ⇒ Context-free Languages

⊲ Stack is used to maintain counter, but only one counter can go arbitrarily high.

Recognizing Finite Sets of Strings

Identifying words from a small, finite, fixed vocabulary is straightforward.
For instance, consider a stack machine with push, pop, and add operations with two constants: 0 and 1.
We can use the automaton:

s

h

p

p 0 1

u o

a

d

d

push

pop add

integer_constant

Finite State Automata

Represented by a labeled directed graph.

• A finite set of states (vertices).

• Transitions between states (edges).

• Labels on transitions are drawn from Σ ∪ {ǫ}.

• One distinguished start state.

• One or more distinguished final states.

Finite State Automata: An Example

Consider the Regular Expression (a | b)∗
a(a | b).

L((a | b)∗a(a | b)) = {aa, ab, aaa, aab, baa, bab,
aaaa, aaab, abaa, abab, baaa, . . .}.

The following automaton determines whether an input string belongs to L((a | b)∗a(a | b):

a

a

b b

a

1 2 3

Determinism

(a | b)∗
a(a | b):

Nondeterministic:
(NFA)

a

a

b b

a

1 2 3

Deterministic:
(DFA)

a

a

b

b

a

a

b

1 2

3

4

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

. . . if beginning from the start state

. . . we can trace some path through the automaton

. . . such that the sequence of edge labels spells x

. . . and end in a final state.

Recognition with an NFA

Is abab ∈ L((a | b)∗
a(a | b))?

a

a

b b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1
Path 2: 1 1 1 2 3 Accept
Path 3: 1 2 3 ⊥ ⊥

Accept

Recognition with an NFA

Is abab ∈ L((a | b)∗
a(a | b))?

a

a

b b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1
Path 2: 1 1 1 2 3 Accept
Path 3: 1 2 3 ⊥ ⊥

Accept

Recognition with a DFA

Is abab ∈ L((a | b)∗
a(a | b))?

a

a

b

b

a

a

b

b

1 2

3

4

Input: a b a b

NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

• NFA may have transitions labeled by ǫ.

(Spontaneous transitions)

• All transition labels in a DFA belong to Σ.

• For some string x, there may be many accepting paths in an NFA.

• For all strings x, there is one unique accepting path in a DFA.

• Usually, an input string can be recognized faster with a DFA.

• NFAs are typically smaller than the corresponding DFAs.

Regular Expressions to NFA

Thompson’s Construction: For every regular expression r, derive an NFA N(r) with unique start and final states.

ǫ
ε

α ∈ Σ
α

(r1 | r2)

N(r)
1ε

ε

ε

ε
N(r)

2

Regular Expressions to NFA (contd.)

r1r2 N(r)
2

N(r)
1

ε ε

r∗
ε ε

N(r)

ε

ε

Example

(a | b)∗
a(a | b):

ε

ε ε

ε
a

b

ε ε a
ε

ε ε

ε
a

b

ε

Recognition with an NFA

Is abab ∈ L((a | b)∗
a(a | b))?

a

a

b b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1
Path 2: 1 1 1 2 3 Accept
Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept

Recognition with an NFA (contd.)

Is aaab ∈ L((a | b)∗
a(a | b))?

a

a

b b

a

1 2 3

Input: a a a b

Path 1: 1 1 1 1 1
Path 2: 1 1 1 1 2
Path 3: 1 1 1 2 3 Accept
Path 4: 1 1 2 3 ⊥
Path 5: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 2, 3} {1, 2, 3} {1, 2, 3} Accept

Recognition with an NFA (contd.)

Is aabb ∈ L((a | b)∗
a(a | b))?

a

a

b b

a

1 2 3

Input: a a a b

Path 1: 1 1 1 1 1
Path 2: 1 1 2 3 ⊥
Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 2, 3} {1, 3} {1} REJECT

Converting NFA to DFA

Subset construction
Given a set S of NFA states,

• compute Sǫ = ǫ-closure(S): Sǫ is the set of all NFA states reachable by zero or more ǫ-transitions from S.

• compute Sα = goto(S, α):

– S′ is the set of all NFA states reachable from S by taking a transition labeled α.

– Sα = ǫ-closure(S′).

Converting NFA to DFA (contd).

Each state in DFA corresponds to a set of states in NFA.
Start state of DFA = ǫ-closure(start state of NFA).
From a state s in DFA that corresponds to a set of states S in NFA:

add a transition labeled α to state s′ that corresponds to a non-empty S′ in NFA,

such that S′ = goto(S, α).

⇐ s is a final state of DFA

NFA → DFA: An Example

a

a

b b

a

1 2 3

ǫ-closure({1}) = {1}
goto({1}, a) = {1, 2}
goto({1}, b) = {1}
goto({1, 2}, a) = {1, 2, 3}
goto({1, 2}, b) = {1, 3}
goto({1, 2, 3}, a) = {1, 2, 3}
...

NFA → DFA: An Example (contd.)

ǫ-closure({1}) = {1}
goto({1}, a) = {1, 2}
goto({1}, b) = {1}
goto({1, 2}, a) = {1, 2, 3}

goto({1, 2}, b) = {1, 3}

goto({1, 2, 3}, a) = {1, 2, 3}

goto({1, 2, 3}, b) = {1}
goto({1, 3}, a) = {1, 2}
goto({1, 3}, b) = {1}

NFA → DFA: An Example (contd.)

goto({1}, a) = {1, 2}
goto({1}, b) = {1}
goto({1, 2}, a) = {1, 2, 3}
goto({1, 2}, b) = {1, 3}
goto({1, 2, 3}, a) = {1, 2, 3}
...

a

a

b

b

a

a

b

b

{1} {1,2}

{1,3}

{1,2,3}

NFA vs. DFA

R = Size of Regular Expression
N = Length of Input String

NFA DFA
Size of
Automaton

O(R) O(2R)

Recognition time

Lexical Analysis

• Regular Expressions and Definitions are used to specify the set of strings (lexemes) corresponding to a token.

• An automaton (DFA/NFA) is built from the above specifications.

• Each final state is associated with an action: emit the corresponding token.

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits separated by a decimal point).

[0-9]+ { emit(INTEGER_CONSTANT); }

[0-9]+"."[0-9]+ { emit(FLOAT_CONSTANT); }

0-9

0-9

0-9

0-9

ε
0-9

0-9

ε "."

INTEGER_CONSTANT

FLOAT_CONSTANT

Lex

Tool for building lexical analyzers.
Input: lexical specifications (.l file)
Output: C function (yylex) that returns a token on each invocation.

%%

[0-9]+ { return(INTEGER_CONSTANT); }

[0-9]+"."[0-9]+ { return(FLOAT_CONSTANT); }

Tokens are simply integers (#define’s).

Lex Specifications

%{

C header statements for inclusion
%}

Regular Definitions e.g.:
digit [0-9]

%%

Token Specifications e.g.:
{digit}+ { return(INTEGER_CONSTANT); }

%%

Support functions in C

Regular Expressions in Lex

• Range: [0-7]: Integers from 0 through 7 (inclusive)

[a-nx-zA-Q]: Letters a thru n, x thru z and A thru Q.

• Exception: [^/]: Any character other than /.

• Definition: {digit}: Use the previously specified regular definition digit.

• Special characters: Connectives of regular expression, convenience features.

e.g.: | * ^

Special Characters in Lex

| * + ? () Same as in regular expressions
[] Enclose ranges and exceptions
{ } Enclose “names” of regular definitions
^ Used to negate a specified range (in Exception)
. Match any single character except newline
\ Escape the next character
\n, \t Newline and Tab

For literal matching, enclose special characters in double quotes (") e.g.: "*"

Or use \ to escape. e.g.: \"

Examples

for Sequence of f, o, r
"||" C-style OR operator (two vert. bars)
.* Sequence of non-newline characters

[^*/]+ Sequence of characters except * and /

\"[^"]*\" Sequence of non-quote characters
beginning and ending with a quote

({letter}|" ")({letter}|{digit}|" ")*

C-style identifiers

A Complete Example

%{

#include <stdio.h>

#include "tokens.h"

%}

digit [0-9]

hexdigit [0-9a-f]

%%

"+" { return(PLUS); }

"-" { return(MINUS); }

{digit}+ { return(INTEGER_CONSTANT); }

{digit}+"."{digit}+ { return(FLOAT_CONSTANT); }

. { return(SYNTAX_ERROR); }

%%

Actions

Actions are attached to final states.

• Distinguish the different final states.

• Can be used to set attribute values.

• Fragment of C code (blocks enclosed by ‘{’ and ‘}’).

Attributes

Additional information about a token’s lexeme.

• Stored in variable yylval

• Type of attributes (usually a union) specified by YYSTYPE

• Additional variables:

– yytext: Lexeme (Actual text string)

– yyleng: length of string in yytext

⊲ yylineno: Current line number (number of ‘\n’ seen thus far)

∗ enabled by %option yylineno

Priority of matching

What if an input string matches more than one pattern?

"if" { return(TOKEN_IF); }

{letter}+ { return(TOKEN_ID); }

"while" { return(TOKEN_WHILE); }

• A pattern that matches the longest string is chosen.

Example: if1 is matched with an identifier, not the keyword if.

• Of patterns that match strings of same length, the first (from the top of file) is chosen.

Example: while is matched as an identifier, not the keyword while.

Constructing Scanners using (f)lex

• Scanner specifications: specifications.l

(f)lex

specifications.l −−−−→ lex.yy.c

• Generated scanner in lex.yy.c

(g)cc

lex.yy.c −−−−→ executable

– yywrap(): hook for signalling end of file.

– Use -lfl (flex) or -ll (lex) flags at link time to include default function yywrap() that always returns 1.

Implementing a Scanner

transition : state × Σ → state

algorithm scanner() {
current state = start state;
while (1) {

c = getc(); /* on end of file, ... */
if defined(transition(current state, c))

current state = transition(current state, c);
else

return s;
}

}

Implementing a Scanner (contd.)

Implementing the transition function:

• Simplest: 2-D array.

Space inefficient.

• Traditionally compressed using row/colum equivalence. (default on (f)lex)

Good space-time tradeoff.

• Further table compression using various techniques:

– Example: RDM (Row Displacement Method):

Store rows in overlapping manner using 2 1-D arrays.

Smaller tables, but longer access times.

Lexical Analysis: A Summary

Convert a stream of characters into a stream of tokens.

• Make rest of compiler independent of character set

• Strip off comments

• Recognize line numbers

• Ignore white space characters

• Process macros (definitions and uses)

• Interface with symbol (name) table.

