Phases of Syntax Analysis

1. Identify the words: Lexical Analysis.

Converts a stream of characters (input program) into a stream of tokens.
Also called Scanning or Tokenizing.
2. Identify the sentences: Parsing.

Derive the structure of sentences: construct parse trees from a stream of tokens.

$\underline{\text { Lexical Analysis }}$

Convert a stream of characters into a stream of tokens.

- Simplicity: Conventions about "words" are often different from conventions about "sentences".
- Efficiency: Word identification problem has a much more efficient solution than sentence identification problem.
- Portability: Character set, special characters, device features.

Terminology

- Token: Name given to a family of words.
e.g., integer_constant
- Lexeme: Actual sequence of characters representing a word.
e.g., 32894
- Pattern: Notation used to identify the set of lexemes represented by a token.
e.g., $[0-9]+$

Terminology

A few more examples:

Token	Sample Lexemes	Pattern
while	while	while
integer_constant	$32894,-1093,0$	$[0-9]+$
identifier	buffer_size	$[\mathrm{a}-\mathrm{zA}-\mathrm{Z}]+$

How do we compactly represent the set of all lexemes corresponding to a token?
For instance:
The token integer_constant represents the set of all integers: that is, all sequences of digits (0-9), preceded by an optional sign (+ or -).

Obviously, we cannot simply enumerate all lexemes.
Use Regular Expressions.

Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet Σ.

- a : stands for the set $\{a\}$ that contains a single string a.
\triangleright Analogous to Union.
- $a b$: stands for the set $\{\mathrm{ab}\}$ that contains a single string ab .
\triangleright Analogous to Product.
$\triangleright(a \mid b)(a \mid b):$ stands for the set $\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\}$.
- a^{*} : stands for the set $\{\epsilon, \mathrm{a}, \mathrm{aa}$, aaa,,$\ldots\}$ that contains all strings of zero or more a's.
\triangleright Analogous to closure of the product operation.

Regular Expressions

Examples of Regular Expressions over $\{\mathrm{a}, \mathrm{b}\}$:

- $(a \mid b)^{*}$: Set of strings with zero or more a's and zero or more b's:
$\{\epsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}$
- $\left(a^{*} b^{*}\right)$: Set of strings with zero or more a's and zero or more b's such that all a's occur before any b: $\{\epsilon, a, b, a a, a b, b b, a a a, a a b, a b b, \ldots\}$
- $\left(a^{*} b^{*}\right)^{*}$: Set of strings with zero or more a's and zero or more b's:
$\{\epsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}$

Language of Regular Expressions

Let R be the set of all regular expressions over Σ. Then,

- Empty String: $\epsilon \in R$
- Unit Strings: $\alpha \in \Sigma \Rightarrow \alpha \in R$
- Concatenation: $r_{1}, r_{2} \in R \Rightarrow r_{1} r_{2} \in R$
- Alternative: $r_{1}, r_{2} \in R \Rightarrow\left(r_{1} \mid r_{2}\right) \in R$
- Kleene Closure: $r \in R \Rightarrow r^{*} \in R$

Regular Expressions

Example: $(a \mid b)^{*}$

$$
\begin{aligned}
L_{0} & =\{\epsilon\} \\
L_{1} & =L_{0} \cdot\{\mathrm{a}, \mathrm{~b}\} \\
& =\{\epsilon\} \cdot\{\mathrm{a}, \mathrm{~b}\} \\
& =\{\mathrm{a}, \mathrm{~b}\} \\
L_{2} & =L_{1} \cdot\{\mathrm{a}, \mathrm{~b}\} \\
& =\{\mathrm{a}, \mathrm{~b}\} \cdot\{\mathrm{a}, \mathrm{~b}\} \\
& =\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\} \\
L_{3} & =L_{2} \cdot\{\mathrm{a}, \mathrm{~b}\} \\
& \vdots \\
L=\bigcup_{i=0}^{\infty} L_{i} & =\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \ldots\}
\end{aligned}
$$

Semantic Function \mathcal{L} : Maps regular expressions to sets of strings.

$$
\begin{aligned}
\mathcal{L}(\epsilon) & =\{\epsilon\} \\
\mathcal{L}(\alpha) & =\{\alpha\} \quad(\alpha \in \Sigma) \\
\mathcal{L}\left(r_{1} \mid r_{2}\right) & =\mathcal{L}\left(r_{1}\right) \cup \mathcal{L}\left(r_{2}\right) \\
\mathcal{L}\left(r_{1} r_{2}\right) & =\mathcal{L}\left(r_{1}\right) \cdot \mathcal{L}\left(r_{2}\right) \\
\mathcal{L}\left(r^{*}\right) & =\{\epsilon\} \cup\left(\mathcal{L}(r) \cdot \mathcal{L}\left(r^{*}\right)\right)
\end{aligned}
$$

Computing the Semantics

$$
\begin{aligned}
\mathcal{L}(a) & =\{\mathrm{a}\} \\
\mathcal{L}(a \mid b) & =\mathcal{L}(a) \cup \mathcal{L}(b) \\
& =\{\mathrm{a}\} \cup\{\mathrm{b}\} \\
& =\{\mathrm{a}, \mathrm{~b}\} \\
\mathcal{L}(a b) & =\mathcal{L}(a) \cdot \mathcal{L}(b) \\
& =\{\mathrm{a}\} \cdot\{\mathrm{b}\} \\
& =\{\mathrm{ab}\} \\
\mathcal{L}((a \mid b)(a \mid b)) & =\mathcal{L}(a \mid b) \cdot \mathcal{L}(a \mid b) \\
& =\{\mathrm{a}, \mathrm{~b}\} \cdot\{\mathrm{a}, \mathrm{~b}\} \\
& =\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\}
\end{aligned}
$$

Computing the Semantics of Closure

Example: $\mathcal{L}\left((a \mid b)^{*}\right)$

$$
=\{\epsilon\} \cup\left(\mathcal{L}(a \mid b) \cdot \mathcal{L}\left((a \mid b)^{*}\right)\right)
$$

$$
\begin{aligned}
L_{0} & =\{\epsilon\} \quad \text { Base case } \\
L_{1} & =\{\epsilon\} \cup\left(\{\mathrm{a}, \mathrm{~b}\} \cdot L_{0}\right) \\
& =\{\epsilon\} \cup(\{\mathrm{a}, \mathrm{~b}\} \cdot\{\epsilon\}) \\
& =\{\epsilon, \mathrm{a}, \mathrm{~b}\} \\
L_{2} & =\{\epsilon\} \cup\left(\{\mathrm{a}, \mathrm{~b}\} \cdot L_{1}\right) \\
& =\{\epsilon\} \cup(\{\mathrm{a}, \mathrm{~b}\} \cdot\{\epsilon, \mathrm{a}, \mathrm{~b}\}) \\
& =\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{~b}\} \\
\vdots & \\
\mathcal{L}\left((a \mid b)^{*}\right) & =L_{\infty}=\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \ldots\} \\
& \text { Another Example }
\end{aligned}
$$

$\mathcal{L}\left(\left(a^{*} b^{*}\right)^{*}\right):$

$$
\begin{aligned}
\mathcal{L}\left(a^{*}\right)= & \{\epsilon, \mathrm{a}, \mathrm{a}, \ldots\} \\
\mathcal{L}\left(b^{*}\right)= & \{\epsilon, \mathrm{b}, \mathrm{bb}, \ldots\} \\
\mathcal{L}\left(a^{*} b^{*}\right)= & \{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{bb}, \\
& \\
& \text { aaa, aab, abb, bbb}, \ldots\} \\
\mathcal{L}\left(\left(a^{*} b^{*}\right)^{*}\right)= & \{\epsilon\} \\
& \cup\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{bb},
\end{aligned}
$$

$$
\text { aaa, aab, abb, bbb, ...\} }
$$

$$
\cup\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb},
$$

$$
\text { aaa, aab, aba, abb, baa, bab, bba, bbb, ... }\}
$$

Regular Definitions

Assign "names" to regular expressions.
For example,

$$
\begin{array}{rll}
\text { digit } & \longrightarrow & 0|1| \cdots \mid 9 \\
\text { natural } & \longrightarrow & \text { digit digit }^{*}
\end{array}
$$

Shorthands:

- a^{+}: Set of strings with one or more occurrences of a.
- $a^{?}$: Set of strings with zero or one occurrences of a.

Example:

$$
\begin{gathered}
\text { integer } \rightarrow(+\mid-)^{?} \text { digit }^{+} \\
\text {Regular Definitions: Examples }
\end{gathered}
$$

float	\longrightarrow
integer. fraction	
integer	\longrightarrow
$(+\mid-)^{?}$?	no_leading_zero
no_leading_zero	\longrightarrow
(nonzero_digit digit $\left.{ }^{*}\right) \mid 0$	
fraction	\longrightarrow
no_trailing_zero exponent	

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions specify sets of strings over an input alphabet.

- They can hence be used to specify the set of lexemes associated with a token.
\triangleright Used as the pattern language
How do we decide whether an input string belongs to the set of strings specified by a regular expression?

Using Regular Definitions for Lexical Analysis

Q: Is ababbaabbb in $\mathcal{L}\left(\left(\left(a^{*} b^{*}\right)^{*}\right)\right.$?
A: Hm. Well. Let's see.

$$
\begin{aligned}
\mathcal{L}\left(\left(a^{*} b^{*}\right)^{*}\right)= & \{\epsilon\} \\
& \cup\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{bb}, \\
& \quad \text { aaa, aab, abb, bbb, } \ldots\} \\
& \cup\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \\
& \quad \text { aaa, aab, aba, abb, baa, bab, bba, bbb, } \ldots\} \\
& \vdots \\
= & ? ? ? \\
& \\
& \\
& \text { Recognizers }
\end{aligned}
$$

Construct automata that recognize strings belonging to a language.

- Finite State Automata \Rightarrow Regular Languages
- Push Down Automata \Rightarrow Context-free Languages
\triangleright Stack is used to maintain counter, but only one counter can go arbitrarily high.

Recognizing Finite Sets of Strings

Identifying words from a small, finite, fixed vocabulary is straightforward.
For instance, consider a stack machine with push, pop, and add operations with two constants: 0 and 1.
We can use the automaton:

Finite State Automata

Represented by a labeled directed graph.

- A finite set of states (vertices).
- Transitions between states (edges).
- Labels on transitions are drawn from $\Sigma \cup\{\epsilon\}$.
- One distinguished start state.
- One or more distinguished final states.

Finite State Automata: An Example

Consider the Regular Expression $(a \mid b)^{*} a(a \mid b)$.
$\mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right)=\{\mathrm{aa}, \mathrm{ab}, \mathrm{aaa}, \mathrm{aab}, \mathrm{baa}, \mathrm{bab}$,
aaaa, aaab, abaa, abab, baaa, ...\}.
The following automaton determines whether an input string belongs to $\mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right.$:

Determinism

$(a \mid b)^{*} a(a \mid b):$

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x
... if beginning from the start state
... we can trace some path through the automaton
... such that the sequence of edge labels spells x
\ldots and end in a final state.

Recognition with an NFA

Is $\underline{\text { abab }} \in \mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right) ?$

Is $\underline{\text { abab }} \in \mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right) ?$

Recognition with a DFA

Is $\underline{\text { abab }} \in \mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right) ?$

NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

- NFA may have transitions labeled by ϵ.
(Spontaneous transitions)
- All transition labels in a DFA belong to Σ.
- For some string x, there may be many accepting paths in an NFA.
- For all strings x, there is one unique accepting path in a DFA.
- Usually, an input string can be recognized faster with a DFA.
- NFAs are typically smaller than the corresponding DFAs.

Regular Expressions to NFA

Thompson's Construction: For every regular expression r, derive an NFA $N(r)$ with unique start and final states.

Example

$$
(a \mid b)^{*} a(a \mid b)
$$

$\underline{\text { Recognition with an NFA }}$

Is abab $\in \mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right)$?

Input:		a	b	a	b	
Path 1:	1	1	1	1	1	
Path 2:	1	1	1	2	3	Accept
Path 3:	1	2	3	\perp	\perp	
All Paths	$\{1\}$	$\{1,2\}$	$\{1,3\}$	$\{1,2\}$	$\{1,3\}$	Accept
Recognition with an NFA						(contd.)

Is aaab $\in \mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right)$?

Input:		a	a	a	b	
Path 1:	1	1	1	1	1	
Path 2:	1	1	1	1	2	
Path 3:	1	1	1	2	3	Accept
Path 4:	1	1	2	3	\perp	
Path 5:	1	2	3	\perp	\perp	
All Paths	$\{1\}$	$\{1,2\}$	$\{1,2,3\}$	$\{1,2,3\}$	$\{1,2,3\}$	Accept

Recognition with an NFA (contd.)

Is $\underline{\text { aabb }} \in \mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right)$?

Input:		a	a	a	b
Path 1:	1	1	1	1	1
Path 2:	1	1	2	3	\perp
Path 3:	1	2	3	\perp	\perp
All Paths	$\{1\}$	$\{1,2\}$	$\{1,2,3\}$	$\{1,3\}$	$\{1\}$

Converting NFA to DFA

Subset construction
Given a set S of NFA states,

- compute $S_{\epsilon}=\epsilon$-closure (S) : S_{ϵ} is the set of all NFA states reachable by zero or more ϵ-transitions from S.
- compute $S_{\alpha}=\operatorname{goto}(S, \alpha)$:
- S^{\prime} is the set of all NFA states reachable from S by taking a transition labeled α.
$-S_{\alpha}=\epsilon$-closure $\left(S^{\prime}\right)$.

Converting NFA to DFA (contd).

Each state in DFA corresponds to a set of states in NFA.
Start state of DFA $=\epsilon$-closure(start state of NFA).
From a state s in DFA that corresponds to a set of states S in NFA:
add a transition labeled α to state s^{\prime} that corresponds to a non-empty S^{\prime} in NFA,
such that $S^{\prime}=\operatorname{goto}(S, \alpha)$.
$\Leftarrow s$ is a final state of DFA

$$
\underline{\text { NFA } \rightarrow \text { DFA: An Example }}
$$

ϵ-closure $(\{1\})=\{1\}$
$\operatorname{goto}(\{1\}, \mathrm{a})=\{1,2\}$ $\operatorname{goto}(\{1\}, \mathrm{b})=\{1\}$ $\operatorname{goto}(\{1,2\}, \mathrm{a})=\{1,2,3\}$ $\operatorname{goto}(\{1,2\}, \mathrm{b})=\{1,3\}$ $\operatorname{goto}(\{1,2,3\}, \mathrm{a})=\{1,2,3\}$
!

NFA \rightarrow DFA: An Example (contd.)

$$
\begin{array}{ll}
\epsilon-\operatorname{closure}(\{1\}) & =\{1\} \\
\operatorname{goto}(\{1\}, \mathrm{a}) & =\{1,2\} \\
\operatorname{goto}(\{1\}, \mathrm{b}) & =\{1\} \\
\operatorname{goto}(\{1,2\}, \mathrm{a}) & =\underline{\{1,2,3\}} \\
\operatorname{goto}(\{1,2\}, \mathrm{b}) & =\underline{\{1,3\}} \\
\operatorname{goto}(\{1,2,3\}, \mathrm{a}) & =\underline{\{1,2,3\}} \\
\operatorname{goto}(\{1,2,3\}, \mathrm{b}) & =\underline{\{1\}} \\
\operatorname{goto}(\{1,3\}, \mathrm{a}) & =\{1,2\} \\
\operatorname{goto}(\{1,3\}, \mathrm{b}) & =\{1\}
\end{array}
$$

NFA \rightarrow DFA: An Example (contd.)

NFA vs. DFA
$R=$ Size of Regular Expression
$N=$ Length of Input String

	NFA	DFA
Size of Automaton	$O(R)$	$O\left(2^{R}\right)$

Lexical Analysis

- Regular Expressions and Definitions are used to specify the set of strings (lexemes) corresponding to a token.
- An automaton (DFA/NFA) is built from the above specifications.
- Each final state is associated with an action: emit the corresponding token.

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits separated by a decimal point).

Tool for building lexical analyzers.
Input: lexical specifications (.1 file)
Output: C function (yylex) that returns a token on each invocation.

\%\% $[0-9]+$	
$[0-9]+" \cdot "[0-9]+$	\{return(INTEGER_CONSTANT); \}

Tokens are simply integers (\#define's).

Lex Specifications

```
%{
    C header statements for inclusion
%}
    Regular Definitions e.g.:
    digit [0-9]
%%
    Token Specifications e.g.:
        {digit}+ { return(INTEGER_CONSTANT); }
%%
    Support functions in C
```

- Range: [0-7]: Integers from 0 through 7 (inclusive)
[a-nx-zA-Q]: Letters a thru n, x thru z and A thru Q.
- Exception: [^/]: Any character other than /.
- Definition: \{digit\}: Use the previously specified regular definition digit.
- Special characters: Connectives of regular expression, convenience features.
e.g.: | * ~

Special Characters in Lex

$\mid+? ~(~)$	Same as in regular expressions
[]	Enclose ranges and exceptions
$\}$	Enclose "names" of regular definitions
\sim	Used to negate a specified range (in Exception)
.	Match any single character except newline
\backslash	Escape the next character
$\backslash n, \backslash t$	Newline and Tab

For literal matching, enclose special characters in double quotes (") e.g.: "*"
Or use \to escape. e.g.: \"

Examples

for	Sequence of f, o, r	
" \\| \|	C-style OR operator (two vert. bars)	
.*	Sequence of non-newline characters	
[${ }^{*}$ /] ${ }^{\text {+ }}$	Sequence of characters except * and /	
\" [^"]*\"	Sequence of non-quote characters beginning and ending with a quote	
$\text { (\{letter\}\|"_")(\{letter\}\|\{digit\}\|"_")* }$		

A Complete Example

```
%{
#include <stdio.h>
#include "tokens.h"
%}
digit [0-9]
hexdigit [0-9a-f]
%%
"+" { return(PLUS); }
"-" { return(MINUS); }
{digit}+ { return(INTEGER_CONSTANT); }
{digit}+"."{digit}+ { return(FLOAT_CONSTANT); }
{ return(SYNTAX_ERROR); }
```


Actions

Actions are attached to final states.

- Distinguish the different final states.
- Can be used to set attribute values.
- Fragment of C code (blocks enclosed by ' $\{$ ' and ' $\}$ ').

Attributes

Additional information about a token's lexeme.

- Stored in variable yylval
- Type of attributes (usually a union) specified by YYSTYPE
- Additional variables:
- yytext: Lexeme (Actual text string)
- yyleng: length of string in yytext
\triangleright yylineno: Current line number (number of ' $\backslash n$ ' seen thus far) * enabled by \%option yylineno

Priority of matching

What if an input string matches more than one pattern?

"if"	$\{$ return(TOKEN_IF); \}
\{letter\}+	$\{$ return(TOKEN_ID); \}
"while"	$\{$ return(TOKEN_WHILE) ; \}

- A pattern that matches the longest string is chosen.

Example: if1 is matched with an identifier, not the keyword if.

- Of patterns that match strings of same length, the first (from the top of file) is chosen.

Example: while is matched as an identifier, not the keyword while.

Constructing Scanners using (f)lex

- Scanner specifications: specifications. 1
(f) 1 ex
specifications.1 \longrightarrow lex.yy.c
- Generated scanner in lex.yy.c
lex.yy.c $\xrightarrow{(\mathrm{g}) \mathrm{cc}}$ executable
- yywrap(): hook for signalling end of file.
- Use -lfl (flex) or -ll (lex) flags at link time to include default function yywrap() that always returns 1.

Implementing a Scanner

```
transition : state }\times\Sigma->\mathrm{ state
algorithm scanner() {
    current_state = start state;
    while (1) {
        c = getc(); /* on end of file, ... */
        if defined(transition(current_state, c))
                current_state = transition(current_state, c);
            else
                return s;
    }
```


Implementing a Scanner (contd.)

Implementing the transition function:

- Simplest: 2-D array.

Space inefficient.

- Traditionally compressed using row/colum equivalence. (default on (f)lex)

Good space-time tradeoff.

- Further table compression using various techniques:
- Example: RDM (Row Displacement Method):

Store rows in overlapping manner using 2 1-D arrays.
Smaller tables, but longer access times.

$$
\underline{\text { Lexical Analysis: A Summary }}
$$

Convert a stream of characters into a stream of tokens.

- Make rest of compiler independent of character set
- Strip off comments
- Recognize line numbers
- Ignore white space characters
- Process macros (definitions and uses)
- Interface with symbol (name) table.

