Phases of Syntax Analysis

1. Identify the words: Lexical Analysis.

Converts a stream of characters (input program) into a stream of tokens. Also called *Scanning* or *Tokenizing*.

2. Identify the sentences: **Parsing**.

Derive the structure of sentences: construct *parse trees* from a stream of tokens.

Lexical Analysis

Convert a stream of characters into a stream of tokens.

- Simplicity: Conventions about "words" are often different from conventions about "sentences".
- Efficiency: Word identification problem has a much more efficient solution than sentence identification problem.
- Portability: Character set, special characters, device features.

Terminology

- Token: Name given to a family of words. e.g., integer_constant
- Lexeme: Actual sequence of characters representing a word. e.g., 32894
- Pattern: Notation used to identify the set of lexemes represented by a token. e.g., [0-9]+

Terminology

A few more examples:

Token	Sample Lexemes	Pattern
while	while	while
integer_constant	32894, -1093, 0	[0-9]+
identifier	buffer_size	[a-zA-Z]+

Patterns

How do we *compactly* represent the set of all lexemes corresponding to a token? For instance:

The token integer_constant represents the set of all integers: that is, all sequences of digits (0-9), preceded by an optional sign (+ or -).

Obviously, we cannot simply enumerate all lexemes.

Use Regular Expressions.

Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet Σ .

• *a*: stands for the set {a} that contains a single string a.

- \triangleright Analogous to Union.
- *ab*: stands for the set {ab} that contains a single string ab.
 - \triangleright Analogous to *Product*.
 - $\triangleright \ (a|b)(a|b): \text{ stands for the set } \{\texttt{aa},\texttt{ab},\texttt{ba},\texttt{bb}\}.$
- a^* : stands for the set $\{\epsilon, a, aa, aaa, \ldots\}$ that contains all strings of zero or more a's.
 - \triangleright Analogous to *closure* of the product operation.

Regular Expressions

Examples of Regular Expressions over $\{a, b\}$:

- (a|b)*: Set of strings with zero or more a's and zero or more b's: {ε, a, b, aa, ab, ba, bb, aaa, aab, ...}
- (a*b*): Set of strings with zero or more a's and zero or more b's such that all a's occur before any b:
 {ε, a, b, aa, ab, bb, aaa, aab, abb, ...}
- (a*b*)*: Set of strings with zero or more a's and zero or more b's: {ε, a, b, aa, ab, ba, bb, aaa, aab, ...}

Language of Regular Expressions

Let R be the set of all regular expressions over Σ . Then,

- Empty String: $\epsilon \in R$
- Unit Strings: $\alpha \in \Sigma \Rightarrow \alpha \in R$
- Concatenation: $r_1, r_2 \in R \Rightarrow r_1r_2 \in R$
- Alternative: $r_1, r_2 \in R \Rightarrow (r_1 \mid r_2) \in R$
- Kleene Closure: $r \in R \Rightarrow r^* \in R$

Regular Expressions

Example: $(a \mid b)^*$

$$\begin{array}{rcl} L_{0} & = & \{\epsilon\} \\ L_{1} & = & L_{0} \cdot \{\mathbf{a}, \mathbf{b}\} \\ & = & \{\epsilon\} \cdot \{\mathbf{a}, \mathbf{b}\} \\ & = & \{\mathbf{a}, \mathbf{b}\} \\ L_{2} & = & L_{1} \cdot \{\mathbf{a}, \mathbf{b}\} \\ & = & \{\mathbf{a}, \mathbf{a}\} \cdot \{\mathbf{a}, \mathbf{b}\} \\ & = & \{\mathbf{a}, \mathbf{a}\} \cdot \{\mathbf{a}, \mathbf{b}\} \\ & = & \{\mathbf{a}, \mathbf{a}\}, \mathbf{b}, \mathbf{b}\} \\ L_{3} & = & L_{2} \cdot \{\mathbf{a}, \mathbf{b}\} \\ & \vdots \\ L = \bigcup_{i=0}^{\infty} L_{i} & = \{\epsilon, \mathbf{a}, \mathbf{b}, \mathbf{a}\mathbf{a}, \mathbf{a}\mathbf{b}, \mathbf{b}\mathbf{a}, \mathbf{b}\}, \ldots\} \end{array}$$

Semantics of Regular Expressions

Semantic Function \mathcal{L} : Maps regular expressions to sets of strings.

$$\mathcal{L}(\epsilon) = \{\epsilon\}$$

$$\mathcal{L}(\alpha) = \{\alpha\} \quad (\alpha \in \Sigma)$$

$$\mathcal{L}(r_1 \mid r_2) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2)$$

$$\mathcal{L}(r_1 \mid r_2) = \mathcal{L}(r_1) \cdot \mathcal{L}(r_2)$$

$$\mathcal{L}(r^*) = \{\epsilon\} \cup (\mathcal{L}(r) \cdot \mathcal{L}(r^*))$$

Computing the Semantics

$$\mathcal{L}(a) = \{\mathbf{a}\}$$

$$\mathcal{L}(a \mid b) = \mathcal{L}(a) \cup \mathcal{L}(b)$$

$$= \{\mathbf{a}\} \cup \{\mathbf{b}\}$$

$$= \{\mathbf{a}, \mathbf{b}\}$$

$$\mathcal{L}(ab) = \mathcal{L}(a) \cdot \mathcal{L}(b)$$

$$= \{\mathbf{a}\} \cdot \{\mathbf{b}\}$$

$$= \{\mathbf{a}\mathbf{b}\}$$

$$\mathcal{L}((a \mid b)(a \mid b)) = \mathcal{L}(a \mid b) \cdot \mathcal{L}(a \mid b)$$

$$= \{\mathbf{a}, \mathbf{b}\} \cdot \{\mathbf{a}, \mathbf{b}\}$$

$$= \{\mathbf{a}\mathbf{a}, \mathbf{a}\mathbf{b}, \mathbf{b}\mathbf{a}, \mathbf{b}\}$$

Computing the Semantics of Closure

Example:
$$\mathcal{L}((a \mid b)^*)$$

 $= \{\epsilon\} \cup (\mathcal{L}(a \mid b) \cdot \mathcal{L}((a \mid b)^*))$
 $L_0 = \{\epsilon\}$ Base case
 $L_1 = \{\epsilon\} \cup (\{a, b\} \cdot L_0)$
 $= \{\epsilon\} \cup (\{a, b\} \cdot \{\epsilon\})$
 $= \{\epsilon, a, b\}$
 $L_2 = \{\epsilon\} \cup (\{a, b\} \cdot L_1)$
 $= \{\epsilon\} \cup (\{a, b\} \cdot \{\epsilon, a, b\})$
 $= \{\epsilon, a, b, aa, ab, ba, bb\}$
 \vdots
 $\mathcal{L}((a \mid b)^*) = L_{\infty} = \{\epsilon, a, b, aa, ab, ba, bb, \ldots\}$
Another Example
 $\mathcal{L}((a^*b^*)^*) :$

$$\mathcal{L}(a^{*}) = \{\epsilon, a, aa, \dots\}$$

$$\mathcal{L}(b^{*}) = \{\epsilon, b, bb, \dots\}$$

$$\mathcal{L}(a^{*}b^{*}) = \{\epsilon, a, b, aa, ab, bb, aaa, aab, abb, bbb, \dots\}$$

$$\mathcal{L}((a^{*}b^{*})^{*}) = \{\epsilon\}$$

$$\cup\{\epsilon, a, b, aa, ab, bb, aaa, ab, bb, aaa, aab, abb, bbb, \dots\}$$

$$\cup\{\epsilon, a, b, aa, ab, ba, bb, aaa, abb, baa, bab, bba, bbb, \dots\}$$

$$\vdots$$

$$= \{\epsilon, a, b, aa, ab, ba, bb, \dots\}$$

Regular Definitions

Assign "names" to regular expressions. For example,

 $\begin{array}{rrr} \text{digit} & \longrightarrow & 0 \mid 1 \mid \cdots \mid 9 \\ \text{natural} & \longrightarrow & \text{digit digit}^* \end{array}$

SHORTHANDS:

- *a*⁺: Set of strings with <u>one</u> or more occurrences of **a**.
- *a*[?]: Set of strings with zero or one occurrences of **a**.

Example:

integer \longrightarrow $(+|-)^{?}$ digit⁺

Regular Definitions: Examples

float	\longrightarrow	integer . fraction
integer	\longrightarrow	$(+ -)^{?}$ no_leading_zero
no_leading_zero	\longrightarrow	(nonzero_digit digit*) 0
fraction	\longrightarrow	no_trailing_zero exponent?
no_trailing_zero	\longrightarrow	(digit* nonzero_digit) 0
exponent	\longrightarrow	(E e) integer
digit	\longrightarrow	0 1 · · · 9
nonzero_digit	\longrightarrow	1 2 · · · 9

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions *specify* sets of strings over an input alphabet.

- They can hence be used to specify the set of *lexemes* associated with a *token*.
 - \triangleright Used as the *pattern* language

How do we decide whether an input string belongs to the set of strings specified by a regular expression?

Using Regular Definitions for Lexical Analysis

Q: Is <u>ababbaabbb</u> in $\mathcal{L}(((a^*b^*)^*)?$ A: Hm. Well. Let's see.

 $\begin{aligned} \mathcal{L}((a^*b^*)^*) &= \{\epsilon\} \\ & \cup\{\epsilon, \mathtt{a}, \mathtt{b}, \mathtt{aa}, \mathtt{ab}, \mathtt{bb}, \\ & \mathtt{aaa}, \mathtt{aab}, \mathtt{abb}, \mathtt{bbb}, \ldots\} \\ & \cup\{\epsilon, \mathtt{a}, \mathtt{b}, \mathtt{aa}, \mathtt{ab}, \mathtt{ba}, \mathtt{bb}, \\ & \mathtt{aaa}, \mathtt{aab}, \mathtt{aba}, \mathtt{abb}, \mathtt{baa}, \mathtt{bba}, \mathtt{bbb}, \ldots\} \\ & \vdots \\ & = ??? \end{aligned}$

Recognizers

Construct *automata* that recognize strings belonging to a language.

• Finite State Automata \Rightarrow Regular Languages

- Push Down Automata \Rightarrow Context-free Languages
 - $\triangleright\,$ Stack is used to maintain counter, but only one counter can go arbitrarily high.

Recognizing Finite Sets of Strings

Identifying words from a small, finite, fixed vocabulary is straightforward. For instance, consider a stack machine with **push**, **pop**, and **add** operations with two constants: 0 and 1. We can use the *automaton*:

Finite State Automata

Represented by a labeled directed graph.

- A finite set of *states* (vertices).
- *Transitions* between states (edges).
- *Labels* on transitions are drawn from $\Sigma \cup \{\epsilon\}$.
- One distinguished *start* state.
- One or more distinguished *final* states.

Finite State Automata: An Example

Consider the Regular Expression $(a \mid b)^*a(a \mid b)$.

aaaa, aaab, abaa, abab, baaa, \dots \}.

The following automaton determines whether an input string belongs to $\mathcal{L}((a \mid b)^*a(a \mid b))$:

 $(a \mid b)^*a(a \mid b)$:

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

... if beginning from the start state

- \ldots $\,$ we can trace some path through the automaton
- \dots such that the sequence of edge labels spells x
- \ldots and end in a final state.

Recognition with an NFA

Is <u>abab</u> $\in \mathcal{L}((a \mid b)^*a(a \mid b))?$

Accept

Recognition with an NFA

Is abab $\in \mathcal{L}((a \mid b)^*a(a \mid b))?$

Accept

Recognition with a DFA

Is abab $\in \mathcal{L}((a \mid b)^*a(a \mid b))?$

NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

- NFA may have transitions labeled by *ε*.
 (Spontaneous transitions)
- All transition labels in a DFA belong to Σ .
- For some string x, there may be *many* accepting paths in an NFA.
- For all strings x, there is *one unique* accepting path in a DFA.
- Usually, an input string can be recognized *faster* with a DFA.
- NFAs are typically *smaller* than the corresponding DFAs.

Regular Expressions to NFA

Thompson's Construction: For every regular expression r, derive an NFA N(r) with unique start and final states.

Regular Expressions to NFA (contd.)

Recognition with an NFA

- compute $S_{\epsilon} = \epsilon$ -closure(S): S_{ϵ} is the set of all NFA states reachable by zero or more ϵ -transitions from S.
- compute $S_{\alpha} = \text{goto}(S, \alpha)$:
 - S' is the set of all NFA states reachable from S by taking a transition labeled $\alpha.$
 - $-S_{\alpha} = \epsilon$ -closure(S').

Converting NFA to DFA (contd).

Each state in DFA corresponds to a set of states in NFA. Start state of DFA = ϵ -closure(start state of NFA). From a state s in DFA that corresponds to a set of states S in NFA:

add a transition labeled α to state s' that corresponds to a non-empty S' in NFA,

such that $S' = \text{goto}(S, \alpha)$.

$NFA \rightarrow DFA$: An Example

 ϵ -closure({1}) $\{1\}$ = $goto(\{1\}, a)$ $\{1, 2\}$ = $\mathrm{goto}(\{1\},\mathtt{b})$ = $\{1\}$ $\{1, 2, 3\}$ $goto(\{1,2\},a)$ = $goto(\{1,2\}, b)$ = $\{1, 3\}$ $goto(\{1, 2, 3\}, a)$ = $\{1, 2, 3\}$ ÷

NFA \rightarrow DFA: An Example (contd.)

ϵ -closure({1})	=	$\{1\}$
$goto(\{1\}, a)$	=	$\{1, 2\}$
$goto(\{1\}, b)$	=	$\{1\}$
$goto(\{1,2\}, a)$	=	$\{1, 2, 3\}$
$goto(\{1,2\},b)$	=	$\{1,3\}$
$goto(\{1,2,3\},a)$	=	$\overline{\{1,2,3\}}$
$goto(\{1, 2, 3\}, b)$	=	{1}
$goto(\{1,3\}, a)$	=	$\{1, 2\}$
$goto(\{1,3\}, b)$	=	{1}

NFA \rightarrow DFA: An Example (contd.)

NFA vs. DFA

R = Size of Regular Expression N = Length of Input String

	NFA	DFA
Size of Automaton	O(R)	$O(2^R)$
D ''' ''		

Lexical Analysis

- Regular Expressions and Definitions are used to specify the set of strings (lexemes) corresponding to a token.
- An automaton (DFA/NFA) is built from the above specifications.
- Each final state is associated with an *action*: emit the corresponding token.

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits separated by a decimal point).

Lex

Tool for building lexical analyzers. Input: lexical specifications (.1 file) Output: C function (yylex) that returns a token on each invocation.

%% [0-9]+	<pre>{ return(INTEGER_CONSTANT); }</pre>
[0-9]+"."[0-9]+	<pre>{ return(FLOAT_CONSTANT); }</pre>

Tokens are simply integers (#define's).

Lex Specifications

Regular Expressions in Lex

- Range: [0-7]: Integers from 0 through 7 (inclusive)
 [a-nx-zA-Q]: Letters a thru n, x thru z and A thru Q.
- Exception: [^/]: Any character other than /.
- Definition: {digit}: Use the previously specified regular definition digit.
- Special characters: Connectives of regular expression, convenience features. e.g.: | * ^

Special Characters in Lex

* + ?()	Same as in regular expressions
[]	Enclose ranges and exceptions
{ }	Enclose "names" of regular definitions
^	Used to negate a specified range (in Exception)
	Match any single character except newline
λ	Escape the next character
n, t	Newline and Tab

For literal matching, enclose special characters in double quotes (") e.g.: "*" Or use $\ to escape. e.g.: \"$

Examples

for	Sequence of f, o, r
" "	C-style OR operator (two vert. bars)
.*	Sequence of non-newline characters
[^*/]+	Sequence of characters except \ast and $/$
\"[^"]*\"	Sequence of non-quote characters
	beginning and ending with a quote
({letter} "_	")({letter} {digit} "_")*
	C-style identifiers

F	4 (Com	pl	ete	Exan	npl	le

%{	
<pre>#include <stdio.h></stdio.h></pre>	
<pre>#include "tokens.h"</pre>	
%}	
digit [0-9]	
hexdigit [0-9a-f]	
%%	
"+"	{ return(PLUS); }
n <u>–</u> n	<pre>{ return(MINUS); }</pre>
{digit}+	<pre>{ return(INTEGER_CONSTANT); }</pre>
{digit}+"."{digit}+	<pre>{ return(FLOAT_CONSTANT); }</pre>
•	<pre>{ return(SYNTAX_ERROR); }</pre>
%%	

Actions

Actions are attached to final states.

• Distinguish the different final states.

- Can be used to set *attribute values*.
- Fragment of C code (blocks enclosed by '{' and '}').

Attributes

Additional information about a token's lexeme.

- Stored in variable yylval
- Type of attributes (usually a union) specified by YYSTYPE
- Additional variables:
 - yytext: Lexeme (Actual text string)
 - yyleng: length of string in yytext
 - \triangleright yylineno: Current line number (number of `\n' seen thus far)
 - * enabled by %option yylineno

Priority of matching

What if an input string matches more than one pattern?

"if"	<pre>{ return(TOKEN_IF); }</pre>
{letter}+	<pre>{ return(TOKEN_ID); }</pre>
"while"	<pre>{ return(TOKEN_WHILE); }</pre>

- A pattern that matches the longest string is chosen. Example: if1 is matched with an identifier, not the keyword if.
- Of patterns that match strings of same length, the first (from the top of file) is chosen. Example: while is matched as an identifier, not the keyword while.

Constructing Scanners using (f)lex

• Scanner specifications: *specifications*.1

(f)lex specifications.l → lex.yy.c

• Generated scanner in lex.yy.c

 $\texttt{lex.yy.c} \quad \longrightarrow \quad executable$

- yywrap(): hook for signalling end of file.
- Use -lfl (flex) or -ll (lex) flags at link time to include default function yywrap() that always returns 1.

Implementing a Scanner

```
transition : state \times \Sigma \rightarrow state

algorithm scanner() {

current_state = start state;

while (1) {

c = getc(); /* on end of file, ... */

if defined(transition(current_state, c))

current_state = transition(current_state, c);

else

return s;

}
```

Implementing a Scanner (contd.)

Implementing the *transition* function:

- Simplest: 2-D array. Space inefficient.
- Traditionally compressed using row/colum equivalence. (default on (f)lex) Good space-time tradeoff.
- Further table compression using various techniques:
 - Example: RDM (Row Displacement Method):
 Store rows in overlapping manner using 2 1-D arrays.

Smaller tables, but longer access times.

Lexical Analysis: A Summary

Convert a stream of characters into a stream of tokens.

- Make rest of compiler independent of character set
- Strip off comments
- Recognize line numbers
- Ignore white space characters
- Process macros (definitions and uses)
- Interface with **symbol** (name) **table**.