
Translation Strategy

Classic Software Engineering Problem

• Objective: Translate a program in a high level language into efficient executable code.

• Strategy: Divide translation process into a series of phases.

Each phase manages some particular aspect of translation.

Interfaces between phases governed by specific intermediate forms.

Translation Steps

• Syntax Analysis Phase: Recognizes “sentences” in the program using the syntax of the language

• Semantic Analysis Phase: Infers information about the program using the semantics of the language

• Intermediate Code Generation Phase: Generates “abstract” code based on the syntactic structure of the program and
the semantic information from Phase 2.

• Optimization Phase: Refines the generated code using a series of optimizing transformations.

• Final Code Generation Phase: Translates the abstract intermediate code into specific machine instructions.

Translation Process

Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION
Program

Program

Steps of Translation

1. Lexical Analysis: (Syntax Analysis Phase)

• Convert the stream of characters representing input program into a sequence of tokens.

• Tokens are the “words” of the programming language.

• For instance, the sequence of characters “static int” is recognized as two tokens, representing the two words
“static” and “int”.

• The sequence of characters “*x++” is recognized as three tokens, representing “*”, “x” and “++”.

Phases of Translation

• Uncover the structure of a sentence in the program from a stream of tokens.

• For instance, the phrase “x = +y”, which is recognized as four tokens, representing “x”, “=” and “+” and “y”,
has the structure =(x, +(y)), i.e., an assignment expression, that operates on “x” and the expression “+(y)”.

• Build a tree called a parse tree that reflects the structure of the input sentence.

Typically, compilers build an abstract syntax tree directly, skipping the construction of parse trees.

Abstract Syntax Tree (AST)

• Represents the syntactic structure of the program, hiding a few details that are irrelevent to later phases of compilation.

• For instance, consider a statement of the form: “if (m == 0) S1 else S2” where S1 and S2 stand for some block of
statements.

A possible AST for this statement is:

If-then-else

AST for S2AST for S1

==

0m

Phases of Translation

3. Type Checking: (Semantic Analysis)

• Decorate the AST with semantic information that is necessary in later phases of translation.

• For instance, the AST

If-then-else

AST for S2AST for S1

==

0m

is transformed into

If-then-else

AST for S1 AST for S20

== : boolean

: integer : integerm

Phases of Translation

4. Intermediate Code Generation:

• Translate each sub-tree of the decorated AST into intermediate code.

• Intermediate code hides many machine-level details, but has instruction-level mapping to many assembly languages.

• Main motivation: portability.

Intermediate Code Generation, an Example

If-then-else

AST for S1 AST for S20

== : boolean

: integer : integerm

=⇒ loadint m

loadimmed 0

intequal

jmpz .L1

jmp .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

jmp .L3

.L3:

Phases of Translation

5. Code Optimization

• Apply a series of transformations to improve the time and space efficiency of the generated code.

• Peephole optimizations: generate new instructions by combining/expanding on a small number of consecutive
instructions.

• Global optimizations: reorder, remove or add instructions to change the structure of generated code.

Code Optimization, an Example

loadint m

loadimmed 0

intequal

jmpz .L1

jmp .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

jmp .L3

.L3:

=⇒ loadint m

jmpnz .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:

Phases of Translation

6. Final Code Generation

• Map instructions in the intermediate code to specific machine instructions.

• Supports standard object file formats.

• Generates sufficient information to enable symbolic debugging.

Final Code Generation, an Example

loadint m

jmpnz .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:

=⇒ movl 8(%ebp), %esi

testl %esi, %esi

jne .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:

Broader Applications of Languages

• Command Interpreters: csh, perl, ...

• Programming: FORTRAN, SmallTalk, ...

• Document Structuring: troff, LATEX, HTML, ...

• Page Definition: PostScript, PCL, ...

• Databases: SQL, ...

• Hardware Design: VHDL, VeriLog, ...

• ... and many many more

Language Processing

Flexible control: programmable combination of primitive operations.

• Express input to the system in a well defined language.

• Translate the input into the sequence of primitive operations.

⊲ Direct execution

⊲ Byte code emulation

⊲ Object code compilation

Language processing techniques have evolved over the last 30 years.
In almost every domain, at least three steps can be identified: lexical analysis, parsing, and syntax-directed translation.

