
Translation Strategy

Classic Software Engineering Problem

• Objective: Translate a program in a high level language into efficient executable code.

• Strategy: Divide translation process into a series of phases.

Each phase manages some particular aspect of translation.

Interfaces between phases governed by specific intermediate forms.

Translation Steps

• Syntax Analysis Phase: Recognizes “sentences” in the program using the syntax of the language

• Semantic Analysis Phase: Infers information about the program using the semantics of the language

• Intermediate Code Generation Phase: Generates “abstract” code based on the syntactic structure of the program and
the semantic information from Phase 2.

• Optimization Phase: Refines the generated code using a series of optimizing transformations.

• Final Code Generation Phase: Translates the abstract intermediate code into specific machine instructions.
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Steps of Translation

1. Lexical Analysis: ( Syntax Analysis Phase)

• Convert the stream of characters representing input program into a sequence of tokens.

• Tokens are the “words” of the programming language.

• For instance, the sequence of characters “static int” is recognized as two tokens, representing the two words
“static” and “int”.

• The sequence of characters “*x++” is recognized as three tokens, representing “*”, “x” and “++”.

Phases of Translation



• Uncover the structure of a sentence in the program from a stream of tokens.

• For instance, the phrase “x = +y”, which is recognized as four tokens, representing “x”, “=” and “+” and “y”,
has the structure =(x, +(y)), i.e., an assignment expression, that operates on “x” and the expression “+(y)”.

• Build a tree called a parse tree that reflects the structure of the input sentence.

Typically, compilers build an abstract syntax tree directly, skipping the construction of parse trees.

Abstract Syntax Tree (AST)

• Represents the syntactic structure of the program, hiding a few details that are irrelevent to later phases of compilation.

• For instance, consider a statement of the form: “if (m == 0) S1 else S2” where S1 and S2 stand for some block of
statements.

A possible AST for this statement is:

If-then-else

AST for S2AST for S1

==

0m

Phases of Translation

3. Type Checking: (Semantic Analysis)

• Decorate the AST with semantic information that is necessary in later phases of translation.

• For instance, the AST

If-then-else

AST for S2AST for S1

==

0m

is transformed into

If-then-else

AST for S1 AST for S20

== : boolean

: integer : integerm

Phases of Translation

4. Intermediate Code Generation:

• Translate each sub-tree of the decorated AST into intermediate code.

• Intermediate code hides many machine-level details, but has instruction-level mapping to many assembly languages.

• Main motivation: portability.

Intermediate Code Generation, an Example



If-then-else

AST for S1 AST for S20

== : boolean

: integer : integerm

=⇒ loadint m

loadimmed 0

intequal

jmpz .L1

jmp .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

jmp .L3

.L3:
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5. Code Optimization

• Apply a series of transformations to improve the time and space efficiency of the generated code.

• Peephole optimizations: generate new instructions by combining/expanding on a small number of consecutive
instructions.

• Global optimizations: reorder, remove or add instructions to change the structure of generated code.

Code Optimization, an Example

loadint m

loadimmed 0

intequal

jmpz .L1

jmp .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

jmp .L3

.L3:

=⇒ loadint m

jmpnz .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:

Phases of Translation

6. Final Code Generation

• Map instructions in the intermediate code to specific machine instructions.

• Supports standard object file formats.

• Generates sufficient information to enable symbolic debugging.

Final Code Generation, an Example

loadint m

jmpnz .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:

=⇒ movl 8(%ebp), %esi

testl %esi, %esi

jne .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:



Broader Applications of Languages

• Command Interpreters: csh, perl, ...

• Programming: FORTRAN, SmallTalk, ...

• Document Structuring: troff, LATEX, HTML, ...

• Page Definition: PostScript, PCL, ...

• Databases: SQL, ...

• Hardware Design: VHDL, VeriLog, ...

• ... and many many more

Language Processing

Flexible control: programmable combination of primitive operations.

• Express input to the system in a well defined language.

• Translate the input into the sequence of primitive operations.

⊲ Direct execution

⊲ Byte code emulation

⊲ Object code compilation

Language processing techniques have evolved over the last 30 years.
In almost every domain, at least three steps can be identified: lexical analysis, parsing, and syntax-directed translation.


