
Logic Programming

CSE 307: Principles of Programming Languages
Logic Programming

R. Sekar

1 / 40

Logic Programming

Section 1

Logic Programming

2 / 40

Logic Programming

Topics

1. Logic Programming

3 / 40

Logic Programming

Logic and Programs

“All men are mortal; Socrates is a man; Hence Socrates is mortal”

∀X . man(X)⇒ mortal(X)

man(socrates)

Predicate logic

Predicates (e.g. man, mortal) which define sets.

Atoms (e.g. socrates) which are data values

Variables (e.g. X) which range over data values

Rules (e.g. ∀X . man(X)⇒ mortal(X)) which define relationships between predicates.

mortal(X) :- man(X).
man(socrates).

let isMortal(x) = isMan(x);;
let isMan(x) = (x = socrates);;

4 / 40

Logic Programming

Logic Programs

mortal(X) :- man(X).
man(socrates).

?- mortal(socrates).
yes

?- mortal(X).
X=socrates ;

no

5 / 40

Logic Programming

Relations and Logic Programs

Unary predicates (e.g. man, mortal) define sets.

Predicates with higher arity (binary, ternary etc) define relations. Example:

flight(jfk, dfw).
flight(dfw, lax).
flight(lga, stl).

flight(stl, jfk).
flight(stl, dfw).

Facts: sets and relations whose definitions do not depend on anything else. (e.g.

man(socrates)).

“extensional data base” (EDB)

6 / 40

Logic Programming

Relations and Logic Programs (Contd.)

Rules define computed sets and relations (e.g. mortal).

“intensional data base” (IDB) relations

canFly(Source, Dest) :- flight(Source, Dest).
canFly(Source, Dest) :- flight(Source, Stopover),

canFly(Stopover, Dest).

7 / 40

Logic Programming

Programming with Logic

Data structures:

Atomic data such as socrates, lga, etc.
Data structures by constructing terms (tree structures):
[]: nil list

[X|Xs]: list with X as its head and Xs as its tail

prog(P, D, S): a structure with prog as the root symbol, and P, D, and S as its children

Example programs: append(Xs,Ys,Zs): Xs, Ys, and Zs are lists such that Zs is the

contactenation of Xs and Ys.
append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :-
append(Xs, Ys, Zs).

8 / 40

Logic Programming

From Functional to Relational Programming

let rec append(l, ys) =
match l with
[] -> ys
x::xs -> x::append(xs, ys)

append([], Ys, Z) :- Z=Ys.
append([X|Xs], Ys, Z) :-

append(Xs, Ys, Zs),
Z = [X|Zs].

append([], Ys, Ys).
append([X|Xs], Ys, [X|Zs]) :-

append(Xs, Ys, Zs).

let rec reverse l =
match l with

[] -> []
x::xs ->
append((reverse xs), [x])

reverse([], Z) :- Z=[].
reverse([X|Xs], Z) :-

reverse(Xs, T),
append(T, [X], Z).

9 / 40

Logic Programming

SML and Prolog

fun rev1(x::xs, ys) =

rev1(xs, x::ys)

| rev1(nil, ys) = ys

fun rev(xs) = rev1(xs, [])

rev1([X|Xs], Ys, Zs) :-

rev1(Xs, [X|Ys], Zs)

rev1([], Ys, Ys).

rev(Xs, Ys) :- rev1(Xs,[],Ys)

datatype tree =

Node of int * tree * tree

| Leaf of int;

fun search(Node(i,l,r), j) =

if (j<=i) then search(l,j)

else search(r,j)

| search(Leaf(i), j) = i = j;

search(node(I,L,R), J) :-

(J =< I -> search(L, J);

search(R, J)).

search(leaf(I),I).
10 / 40

Logic Programming

Syntax of Prolog Programs

Names:
Variable names start with uppercase letters
Predicate names start with lowercase letters
Data constructors (called “function symbols” and “constants”) start with lowercase letters or
enclosed in single quotes

Data structures: a term (a tree of symbols) built using function symbols and
variables.lga

[1] (same as [1 | []])
[1,2] (same as [1 | [2 | []]])
f(g(a))

f(g(h(X)))

f(X, g(X))

(lga, jfk)
11 / 40

Logic Programming

Syntax of Prolog Programs (Contd.)

Atom: a term built with function symbols, predicate symbols and variables.

Example: append([X|Xs], Ys, [X|Zs])

Clauses: of the form lhs : −rhs.
Note the trailing period.
Clause head: An atom
Clause body: a comma-separated sequence of atoms.

Facts: clauses with empty bodies.
Written as lhs.
Rules: clauses with non-empty bodies.

Program: a sequence of clauses.

Query: an atom.
12 / 40

Logic Programming

Arithmetic in Prolog

Use of “=” simply constructs or inspects term structures.
For example, X = 1 + 2 binds X to term 1+2.

Binary operator “is” should be used to evaluate arithmetic expressions.
For example, X is 1 + 2 binds X to 3.
Rhs of “is” must be ground when the operator is evaluated.

Expressions mix real and integer arithmetic, lifting values to real whenever necessary.

Arithmetic comparison operators: =, 	, <, >, =<, >= (Note the syntax of
“less-than-or-equal-to” etc.)

length([], 0).

length([X|Xs], N) :- length(Xs, M), N is M+1.

13 / 40

Logic Programming

How Prolog Works

Prolog attempts to check if the given query q is true by

1. Is there a clause whose left hand side corresponds to q?

2. If not, q is false (we say that q fails)

3. If there is such a clause, say l : −r1, r2, . . . , rn
Now check if all of r1, r2, . . . are true.

If so, q is true (we say that q succeeds)

If not, repeat step (3) until there is no matching clause

Clauses are tried in the order they appear in the program.

If more than one clause applies, they are tried one after another until the goal

succeeds
14 / 40

Logic Programming

How Prolog Works (Contd.)

append([], Ys, Ys).
append([X|Xs], Ys, [X|Zs]) :-

append(Xs, Ys, Zs).

append([a,b], [c], Z) Clause 2

append([b], [c], Z'), Z = [a|Z'] Clause 2

append([], [c], Z�), Z'=[b|Z�], Z = [a|Z'] Clause 1

Z�=[c], Z'=[b|Z�], Z = [a|Z'] Simplify

Z=[a,b,c]

15 / 40

Logic Programming

How Prolog Works (Contd.)

append([], Ys, Ys).
append([X|Xs], Ys, [X|Zs]) :-

append(Xs, Ys, Zs).

append(U, V, [a,b]) Clause 1, Clause 2

(1) U=[], V=[a,b]

(2) append(U',V,[b]), U=[a|U'] Clause 1, Clause 2

(2.1) U'=[], V=[b], U=[a|U'] Simplify

U=[a], V=[b]

(2.2) append(U�,V,[]), U'=[b|U�], U=[a|U'] Clause 1

U�=[], V=[], U'=[b|U�], U=[a|U'] Simplify

U=[a,b], V=[]

16 / 40

Logic Programming

Unification

Unification is the operation to make two data structures identical (i.e. “unify” them).

Predefined binary predicate = may be used to unify terms.

a = a succeeds, a = b fails, X = a succeeds after binding X to a.

f(X) = f(a) succeeds after binding X to a.

g(a) = f(a), f(a) = f(b), f(a,b) = f(b,a) fail.

?- f(X) = f(a), X = b.

?- f(X,a) = f(b,Y).

?- f(X,a) = f(b,X).

A clause is applicable if the query (also called a goal or subgoal) unifies with the

left hand side of the clause.

17 / 40

Logic Programming

Unification (Contd.)

Substitution: a function that maps variables to values (terms).

An unifier of two terms t1 and t2 is a substitution over variables of t1 and t2 that make

them identical.

The substitution {X→ b, Y→ a} is an unifier of f(X,a) and f(b,Y).

The substitution {X→ b, Y→ a, Z→ c, W→ c} is an unifier of f(X,a,Z) and f(b,Y,W).

The substitution {X→ b, Y→ a, Z→ d, W→ d} is an unifier of f(X,a,Z) and f(b,Y,W).

The substitution {X→ b, Y→ a, Z→ W} is an unifier of f(X,a,Z) and f(b,Y,W).

Called the most general unifier

During query evaluation, clauses are selected by computing the most general unifier.

18 / 40

Logic Programming

A Simple Prolog Interpreter: Types

type nonvar = string

type var = int

type term = Var of var | Nvar of nonvar * term list

type clause = term list

type goal = term

type program = clause list

type subst = (var * term) list

type env = int (* base p o i n t e r *) * subst

type path = goal list * env
19 / 40

Logic Programming

A Simple Prolog Interpreter: unify

l e t rec unify : subst −> term −> term −> subst =

fun subst t1 t2 = match (t1 , t2) with

| (Var (x) , _) −> add_subst subst x t2

| (_ , Var (y)) −> add subst y t1

| (Nvar (c , t1s) , Nvar (d , t2s)) −>
i f c=d then unify_list subst t1s t2s

else raise Unif_fail

and unify_list subst l1 l2 = fold_left2 unify subst l1 l2

and add_subst : subst−>var−>term−>subst = fun subst x t =

try le t t ’ = assoc x subst in unify subst ’ t ’ t

with Not_found −> i f t<>Var (x) then (x , t) : : subst else subst
20 / 40

Logic Programming

More about unification ...

Given two terms t1 and t2 containing variables x 1 and x2,

t1 and t2 are unifiable if and only if the logical formula ∃x 1x2 t1 = t2 is satisfiable.

Unification procedure computes a solution to the formula, i.e., a valuation for x 1 and

x2 that makes this formula true.

Every solution to the formula is an instance of the solution computed by unify —

the most general unifier property.

Occurs-check: Note that ∀X X 6= f (X).

So, in general, we need to check if X occurs in t before taking t as a substitution for X .

Omitted in Prolog because it has severe impact on performance

Interestingly, unify terminates even when it computes such cyclic substitutions!

21 / 40

Logic Programming

More about unification ... (Continued)

Unification is a constraint-solving procedure for equality constraints over terms.

Many problems can be modeled in terms of such constraints

Type inference:

For each identifier i , associate a variable Ti that holds its type.

Constraints on Ti ’s types are inferred from each use of i , whether it be as argument to a

function, in an equality or match operation, etc.

Most general unifiers yield the most general types for each identifier.

Logic program evaluation:

Each “call” introduces a constraint between actual and formal parameters.

Most general unifiers correspond to the most general solutions to the query

22 / 40

Logic Programming

Type Inference Example

l e t h y = 0

l e t g x =

i f (l x)

then (h x)

else (g (x + 1))

l e t rec f t =

match t with

| [] −> []

| z : : zs −> (g z) : : (f zs)

Th : Ty → int

Tx : in(Tl)

Tg : Tx → out(Th, Tx)

Tg : int → out(Tg , int), Tx : int

Tt : α list

Tf : Tt → β list

Tf : Tt → out(Tg , α)list

Tf : Tt → out(Tf , Tt)

23 / 40

Logic Programming

Query evaluation in Prolog

The query evaluation procedure in Prolog (called clause resolution) uses backtracking

search.

Given a query (goal), a clause is applicable if its head (lhs) unifies with the query.

When more than one clause is applicable evaluation,

the first clause is selected, and query evaluation continues with the body of the clause

... but we may come back to try the remaining clauses if further query evaluation using the

first clause fails.

Clauses applicable but not yet tried at any point are remembered and are tried upon

backtracking.

Alternative strategy: Eagerly compute all solutions

Let us write a simple interpreter for this strategy
24 / 40

Logic Programming

A simple Prolog interpreter to compute all solutions

l e t rec call : (prog : clause list) (env : env) (goal : goal) : env list =
l e t paths = (map (find_path goal env) prog) in
le t viable_paths = filter (fun (_ , (bp , _)) −> bp > 0) paths

in exec_paths prog viable_paths

and exec_paths prog paths = match paths with
| [] −> []
| p1 : : ps −> (append (exec_path prog p1) (exec_paths prog ps))

and exec_path : program −> path −> env list =
fun prog (glist , env) = match glist with
| [] −> [env]
| goal : : goals −>

l e t envs = call prog env goal in
le t newpaths = map (fun e −> (goals , e)) envs

in (flatten (map (exec_path prog) newpaths))
25 / 40

Logic Programming

A Prolog interpreter to compute all solutions (Continued)

l e t find_path : goal −> env −> clause −> path =

fun goal (bp , subst) clause =

l e t (hd : : body) = alloc_locals bp clause in

try le t subst ’ = assign_to_formals hd goal subst

in (body , (bp + (numvars hd) + (numvarslist body) , subst ’))

with Unif_fail −> ([] , (− 1 , subst))

l e t assign_to_formals hd goal subst : subst = unify subst hd goal

l e t rec alloc_locals : int −> term list −> term list =

fun bp ts = l e t alloc_local t = match t with

| Var (i) −> Var (bp +i)

| Nvar (c , ts) −> Nvar (c , alloc_locals bp ts)

in map alloc_local ts
26 / 40

Logic Programming

Implementing Backtracking

Simply replace eager evaluation used in the interpreter with lazy

evaluation!

But OCaml does not support lazy evaluation
Use a language like Haskell that supports lazy evaluation
Employ a simple trick to achieve lazy evaluation in OCaml
The same trick can also be used in any language that supports lambda abstractions!

That includes C++, JavaScript, Python, ...

Write a top-level print function that consumes the set of solutions
one-at-a-time
prints the first solution

based on user input, either terminates or continues in the print/user-input loop.
27 / 40

Logic Programming

Lazy Evaluation in OCaml

Lazy evaluation: suspend actual parameter evaluation until needed
The expression is stored as a closure that encapsulates the binding of local variables

Lambda definitions already require this ability
The body of the function is an expression that needs to be represented as a closure

Idea: Use lambda definition fe to represent e needing lazy evaluation

fun fe() -> e

Note: fe takes an empty argument (technically, a zero-tuple, aka unit in OCaml)

Evaluation of e is suspended, until it is applied to a unit argument

28 / 40

Logic Programming

Some types and functions for Lazy Evaluation in OCaml

A type to represent lazily evaluated expressions

type ’a thunk = Thunk of (unit −> ’a) | Val of ’a

A function to force evaluation of thunks:

let force v = match v with Thunk x −> x() | Val x −> x

A variant of list type that is evaluated lazily

type ’a lzlist = Nil | Cons of ’a * (’ a lzlist thunk)

To operate on such lazy lists, we need to redefine familiar list operations such as

append, map, filter, flatten, etc.

But almost no other changes needed to the interpreter!

29 / 40

Logic Programming

Example: Redefining map for lzlist

type ’ a thunk = Thunk of (unit −> ’ a) | Val of ’ a

l e t rec lzmap (f : ’ a −> ’ b) (l : ’ a lzlist) : ’ b lzlist =

match l with

| Nil −> Nil

| Cons (l1 , ls) −>
Cons ((f l1) , Thunk (fun () −> map f (force ls)))

30 / 40

Logic Programming

A Backtracking Prolog interpreter

l e t rec call : (prog : clause list) (env : env) (goal : goal) : env lzlist =
l e t paths = (map (find_path goal env) prog) in
le t viable_paths = filter (fun (_ , (bp , _)) −> bp > 0) paths

in exec_paths prog viable_paths

and exec_paths prog paths = match paths with
| [] −> Nil
| p : : ps−> (lzappend (exec_path prog p) (Thunk(fun () -> (exec_paths prog ps))))

and exec_path : program −> path −> lzenv list =
fun prog (glist , env) = match glist with
| [] −> Cons(env, Val(Nil))
| goal : : goals −>

l e t envs = call prog env goal in
le t newpaths = lzmap (fun e −> (goals , e)) envs

in (lzflatten (lzmap (exec_path prog) newpaths))
31 / 40

Logic Programming

Controlling Search

If-then-else: Written as (c -> t ; e) where c, t, e are conjunction of atoms.

Example:

gen(N, L) :-

(N = 0

-> L = []

; M is N-1, gen(M, K), L = [N|R]).

32 / 40

Logic Programming

Controlling Search (Contd.)

Pruning: Proof search can be pruned using “!” (cut).

Cut throws away other choices when more than one clause is applicable.

Use with care: Prolog’s proof process may be hard to understand, and cuts may make the

program di�cult to comprehend!

member(X, [X|_]).
member(X, [Y|Ys]) :-

member(X, Ys).

Finds elements of a list.
Given X and L, member(X, L) determines
whether X is in L or not.
Given L alone, member(X, L) binds X to el-
ements of L (one by one, when backtracking).

member(X, [X|_]) :- !.
member(X, [Y|Ys]) :-

member(X, Ys).

Finds whether or not an element is in a list.
Given X and L, member(X, L) determines
whether X is in L or not.
Given L alone, member(X, L) binds X to the
first element of L.

33 / 40

Logic Programming

Change for a dollar

change([H,Q,D,N,P]) :-

member(H,[0,1,2]), /*Half-dollars*/

member(Q,[0,1,2,3,4]), /*quarters*/

member(D,[0,1,2,3,4,5,6,7,8,9,10]), /* dimes */

member(N,[0,1,2,3,4,5,6,7,8,9,10,

11,12,13,14,15,16,17,18,19,20]), /*nickels*/

S is 50*H+25*Q+10*D+5*N,

S=<100,

P is 100-S.

34 / 40

Logic Programming

Permutation

takeout(X,[X|R],R).

takeout(X,[F|R],[F|S]) :- takeout(X,R,S).

perm([],[]).

perm([X|Y],Z) :-perm(Y,W), takeout(X,Z,W).

35 / 40

Logic Programming

Tree Isomorphism

isomorphic(void, void).

isomorphic(tree(Node, Left1, Right1),

tree(Node, Left2, Right2)) :-

isomorphic(Left1, Left2),

isomorphic(Right1, Right2).

isomorphic(tree(Node, Left1, Right1),

tree(Node, Left2, Right2)) :-

isomorphic(Left1, Right2),

isomorphic(Right1, Left2).

36 / 40

Logic Programming

Checking/Generating Subtrees

subtree(Tree1, Tree2) :-

isomorphic(Tree1, Tree2).

subtree(Tree1, tree(Node, Left, Right)) :-

subtree(Tree1, Left); subtree(Tree1, Right).

37 / 40

Logic Programming

N-Queens

solve(P) :-

perm([1,2,3,4,5,6,7,8],P),

combine([1,2,3,4,5,6,7,8],P,S,D),

all_diff(S), all_diff(D).

combine([X1|X],[Y1|Y],[S1|S],[D1|D]) :-

S1 is X1+Y1, D1 is X1-Y1,

combine(X,Y,S,D).

combine([],[],[],[]).

all_diff([X|Y]) :- \+member(X,Y), all_diff(Y).

all_diff([X]). 38 / 40

Logic Programming

Merge Sort

merge_sort ([] , []) .

merge_sort ([X] , [X]) .

merge_sort (List , SortedList) :−
split (List , First , Second) ,

merge_sort (First , SortedFirst) ,

merge_sort (Second , SortedSecond) ,

merge (SortedFirst , SortedSecond , SortedList) .

split ([] , [] , []) .

split ([X] , [X] , []) .

split ([X1 , X2 | Xs] , [X1 | Ys] , [X2 | Zs]) :− split (Xs , Ys , Zs) .
39 / 40

Logic Programming

Merge Sort (Contd.)

merge([], X, X).

merge(X, [], X).

merge([X|Xs], [Y|Ys], [X|Zs]) :-

X=<Y,

merge(Xs, [Y|Ys], Zs).

merge([X|Xs], [Y|Ys], [Y|Zs]) :-

X > Y,

merge([X|Xs], Ys, Zs).

40 / 40

	Logic Programming

