CSE 307: Principles of Programming Languages

Logic Programming
R. Sekar

Section 1

Logic Programming

Topics

1. Logic Programming

Logic and Programs

- "All men are mortal; Socrates is a man; Hence Socrates is mortal"

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \operatorname{mortal}(X) \\
\operatorname{man}(\text { socrates })
\end{array}
$$

- Predicate logic
- Predicates (e.g. man, mortal) which define sets.
- Atoms (e.g. socrates) which are data values
- Variables (e.g. X) which range over data values
- Rules (e.g. $\forall X . \operatorname{man}(X) \Rightarrow \operatorname{mortal}(X))$ which define relationships between predicates.

Logic Programs

```
?- mortal(socrates).
yes
mortal(X) :- man(X).
man(socrates).
?- mortal(X).
X=socrates ;
no
```


Relations and Logic Programs

- Unary predicates (e.g. man, mortal) define sets.

Predicates with higher arity (binary, ternary etc) define relations. Example:

$$
\begin{array}{ll}
\text { flight (jfk, dfw). } & \text { flight(stl, jfk). } \\
\text { flight(dfw, lax). } & \text { flight(stl, dfw). } \\
\text { flight(lga, stl). } &
\end{array}
$$

- Facts: sets and relations whose definitions do not depend on anything else. (e.g. man(socrates)).
"extensional data base" (EDB)

Relations and Logic Programs (Contd.)

- Rules define computed sets and relations (e.g. mortal).
"intensional data base" (IDB) relations

```
canFly(Source, Dest) :- flight(Source, Dest).
canFly(Source, Dest) :- flight(Source, Stopover),
    canFly(Stopover, Dest).
```


Programming with Logic

- Data structures:
- Atomic data such as socrates, lga, etc.
- Data structures by constructing terms (tree structures):
- []: nil list
- [X|Xs]: list with X as its head and Xs as its tail
- prog(P, D, S): a structure with prog as the root symbol, and P, D, and S as its children
- Example programs: append(Xs,Ys,Zs): Xs, Ys, and Zs are lists such that Zs is the contactenation of $X s$ and $Y s$.
append ([], Ys, Ys).
append ([X|Xs], Ys, [X|Zs]) :append(Xs, Ys, Zs).

From Functional to Relational Programming

let rec append (l, ys) = match 1 with
[] -> ys
$\mathrm{x}:: \mathrm{xs} \rightarrow \mathrm{x}:$:append(xs, ys)
let rec reverse $1=$
match l with
[] -> []
x::xs ->
append((reverse xs), [x])
append([], Ys, Z) :- Z=Ys.
append ([X|Xs], Ys, Z) :-
append (Xs, Ys, Zs), $Z=[X \mid Z s]$.
append([], Ys, Ys). append([X|Xs], Ys, [X|Zs]) :append (Xs, Ys, Zs).
reverse([], Z) :- Z=[]. reverse([X|Xs], Z) :reverse(Xs, T), append (T, [X], Z).

SML and Prolog

```
fun rev1(x::xs, ys) =
        rev1(xs, x::ys)
        rev1(nil, ys) = ys
fun rev(xs) = rev1(xs, [])
```

```
rev1([X|Xs], Ys, Zs) :-
    rev1(Xs, [X|Ys], Zs)
rev1([], Ys, Ys).
rev(Xs, Ys) :- rev1(Xs,[],Ys)
```

search(node(I,L,R), J) :-
($\mathrm{J}=<\mathrm{I}$-> $\operatorname{search}(\mathrm{L}, \mathrm{J})$;
$\operatorname{search}(R, J))$.
$\operatorname{search}(\operatorname{leaf}(I), I)$.

Syntax of Prolog Programs

- Names:
- Variable names start with uppercase letters
- Predicate names start with lowercase letters
- Data constructors (called "function symbols" and "constants") start with lowercase letters or enclosed in single quotes
- Data structures: a term (a tree of symbols) built using function symbols and - varigables.
- [1] (same as [1 | []])
- [1,2] (same as [1 | [2 | []]])
- $f(g(a))$
- $f(g(h(X)))$
- $f(X, g(X))$
- (lga, jfk)

Syntax of Prolog Programs (Contd.)

- Atom: a term built with function symbols, predicate symbols and variables. Example: append([X|Xs], Ys, $[\mathrm{X} \mid \mathrm{Zs}]$)
- Clauses: of the form lhs :-rhs.

Note the trailing period.

- Clause head: An atom
- Clause body: a comma-separated sequence of atoms.
- Facts: clauses with empty bodies.

Written as lhs.

- Rules: clauses with non-empty bodies.
- Program: a sequence of clauses.
- Query: an atom.

Arithmetic in Prolog

- Use of "=" simply constructs or inspects term structures.
- For example, $\mathrm{X}=1+2$ binds X to term $1+2$.
- Binary operator "is" should be used to evaluate arithmetic expressions.
- For example, X is $1+2$ binds X to 3 .
- Rhs of "is" must be ground when the operator is evaluated.
- Expressions mix real and integer arithmetic, lifting values to real whenever necessary.
- Arithmetic comparison operators: $=, \quad-,<,>,=<,>=$ (Note the syntax of "less-than-or-equal-to" etc.)
- length([], 0).
length([X|Xs], N) :- length (Xs, M), N is $\mathrm{M}+1$.

How Prolog Works

Prolog attempts to check if the given query q is true by

1. Is there a clause whose left hand side corresponds to q ?
2. If not, q is false (we say that q fails)
3. If there is such a clause, say $l:-r_{1}, r_{2}, \ldots, r_{n}$

- Now check if all of r_{1}, r_{2}, \ldots are true.
- If so, q is true (we say that q succeeds)
- If not, repeat step (3) until there is no matching clause
- Clauses are tried in the order they appear in the program.
- If more than one clause applies, they are tried one after another until the goal succeeds

How Prolog Works (Contd.)

```
append([], Ys, Ys).
append([X|Xs], Ys, [X|Zs]) :-
    append(Xs, Ys, Zs).
```

append ([a,b], [c], Z)
append([b], [c], $\left.Z^{\prime}\right), Z=\left[a \mid Z^{\prime}\right]$
append([], [c], Z''), $\mathrm{Z}^{\prime}=\left[\mathrm{b} \mid \mathrm{Z}^{\prime}\right], \mathrm{Z}=\left[\mathrm{a} \mid \mathrm{Z}^{\prime}\right]$
$Z^{\prime \prime}=[c], Z^{\prime}=\left[b \mid Z^{\prime}\right], Z=\left[a \mid Z^{\prime}\right]$
$Z=[a, b, c]$

Clause 2
Clause 2
Clause 1
Simplify

How Prolog Works (Contd.)

```
append([], Ys, Ys).
append([X|Xs], Ys, [X|Zs]) :-
    append(Xs, Ys, Zs).
```

append (U, V, [a,b])
(2) append ($\mathrm{U}, \mathrm{V},[\mathrm{b}]), \mathrm{U}=[\mathrm{a} \mid \mathrm{U}]$
(2.1) $U^{\prime}=[], V=[b], U=[a \mid U ']$
$\mathrm{U}=[\mathrm{a}], \mathrm{V}=[\mathrm{b}]$
(2.2) append ($U^{\prime}, \mathrm{V},[\mathrm{l}), \mathrm{U}=\left[\mathrm{b} \mid \mathrm{U}^{\prime}{ }^{\prime}\right], \mathrm{U}=\left[\mathrm{a} \mid \mathrm{U}^{\prime}\right] \quad$ Clause 1
$U^{\prime \prime}=[], V=[], U '=\left[b \mid U^{\prime}\right], U=[a \mid U ']$
$\mathrm{U}=[\mathrm{a}, \mathrm{b}], \mathrm{V}=[]$

Simplify

Clause 1, Clause 2 Simplify

Unification

- Unification is the operation to make two data structures identical (i.e. "unify" them). Predefined binary predicate $=$ may be used to unify terms.
- $a=a$ succeeds, $a=b$ fails, $X=a$ succeeds after binding X to a.
- $f(X)=f(a)$ succeeds after binding X to a.
- $g(a)=f(a), f(a)=f(b), f(a, b)=f(b, a)$ fail.
- ?- $f(X)=f(a), X=b$.
- ?- $f(X, a)=f(b, Y)$.
- ?- $f(X, a)=f(b, X)$.
- A clause is applicable if the query (also called a goal or subgoal) unifies with the left hand side of the clause.

Unification (Contd.)

- Substitution: a function that maps variables to values (terms).
- An unifier of two terms t_{1} and t_{2} is a substitution over variables of t_{1} and t_{2} that make them identical.
- The substitution $\{\mathrm{X} \rightarrow \mathrm{b}, \mathrm{Y} \rightarrow \mathrm{a}\}$ is an unifier of $\mathrm{f}(\mathrm{X}, \mathrm{a})$ and $\mathrm{f}(\mathrm{b}, \mathrm{Y})$.
- The substitution $\{X \rightarrow b, Y \rightarrow a, Z \rightarrow c, W \rightarrow c\}$ is an unifier of $f(X, a, Z)$ and $f(b, Y, W)$.
- The substitution $\{X \rightarrow b, Y \rightarrow a, Z \rightarrow d, W \rightarrow d\}$ is an unifier of $f(X, a, Z)$ and $f(b, Y, W)$.
- The substitution $\{X \rightarrow b, Y \rightarrow a, Z \rightarrow W\}$ is an unifier of $f(X, a, Z)$ and $f(b, Y, W)$.

Called the most general unifier
During query evaluation, clauses are selected by computing the most general unifier.

A Simple Prolog Interpreter: Types

```
type nonvar = string
type var = int
type term = Var of var | Nvar of nonvar * term list
type clause = term list
type goal = term
type program = clause list
```

type subst $=($ var $*$ term) list
type env $=$ int (* base pointer *) * subst
type path $=$ goal list * env

A Simple Prolog Interpreter: unify

let rec unify: subst \rightarrow term \rightarrow term \rightarrow subst $=$ fun subst $t 1$ t2 $=$ match ($t 1$, t2) with

$$
(\operatorname{Var}(\mathrm{x}), \quad \text { _ }) \rightarrow \text { add_subst subst } \mathrm{x} \text { t2 }
$$

| (_, Var (y)) \rightarrow add subst y t1
| (Nvar (c,t1s), Nvar (d,t2s)) \rightarrow

$$
\begin{aligned}
& \text { if } c=d \text { then unify_list subst t1s t2s } \\
& \text { else raise Unif_fail }
\end{aligned}
$$

and unify_list subst $1112=$ fold_left2 unify subst 1112
and add_subst: subst \rightarrow var \rightarrow term \rightarrow subst $=$ fun subst x t = try let $t^{\prime}=\operatorname{assoc} x$ subst in unify subst' $t^{\prime} t^{\prime}$ with Not_found \rightarrow if $t<>\operatorname{Var}(x)$ then ($x, t):$: subst else subst

More about unification ...

- Given two terms t_{1} and t_{2} containing variables \bar{X}_{1} and \bar{X}_{2}, t_{1} and t_{2} are unifiable if and only if the logical formula $\exists \bar{x}_{1} \bar{X}_{2} t_{1}=t_{2}$ is satisfiable.
- Unification procedure computes a solution to the formula, i.e., a valuation for \bar{X}_{1} and \bar{x}_{2} that makes this formula true.
- Every solution to the formula is an instance of the solution computed by unify the most general unifier property.
- Occurs-check: Note that $\forall X \quad X \neq f(X)$.
- So, in general, we need to check if X occurs in t before taking t as a substitution for X.
- Omitted in Prolog because it has severe impact on performance
- Interestingly, unify terminates even when it computes such cyclic substitutions!

More about unification ... (Continued)

- Unification is a constraint-solving procedure for equality constraints over terms.
- Many problems can be modeled in terms of such constraints

Type inference:

- For each identifier i, associate a variable T_{i} that holds its type.
- Constraints on T_{i} 's types are inferred from each use of i, whether it be as argument to a function, in an equality or match operation, etc.
- Most general unifiers yield the most general types for each identifier.

Logic program evaluation:

- Each "call" introduces a constraint between actual and formal parameters.
- Most general unifiers correspond to the most general solutions to the query

Type Inference Example

let $\mathrm{h} \mathrm{y}=0$
let $\mathrm{g} \mathrm{x}=$ if (l x)
then ($\mathrm{h} x$) else $(g(x+1))$
let rec $f t=$ match t with
| [] -> [] | z:: zs -> (g z)::(f zs)
$T_{h}: T_{y} \rightarrow$ int
$T_{x}: i n\left(T_{l}\right)$
$T_{g}: T_{x} \rightarrow \operatorname{out}\left(T_{h}, T_{x}\right)$
$T_{g}:$ int \rightarrow out $\left(T_{g}\right.$, int $), T_{x}:$ int
$T_{t}: \alpha$ list
$T_{f}: T_{t} \rightarrow \beta$ list
$T_{f}: T_{t} \rightarrow$ out $\left(T_{g}, \alpha\right)$ list
$T_{f}: T_{t} \rightarrow \operatorname{out}\left(T_{f}, T_{t}\right)$

Query evaluation in Prolog

- The query evaluation procedure in Prolog (called clause resolution) uses backtracking search.
- Given a query (goal), a clause is applicable if its head (lhs) unifies with the query.
- When more than one clause is applicable evaluation,
- the first clause is selected, and query evaluation continues with the body of the clause
- ... but we may come back to try the remaining clauses if further query evaluation using the first clause fails.
- Clauses applicable but not yet tried at any point are remembered and are tried upon backtracking.
- Alternative strategy: Eagerly compute all solutions
- Let us write a simple interpreter for this strategy

A simple Prolog interpreter to compute all solutions

let rec call: (prog: clause list) (env:env) (goal:goal): en list = let paths = (map (find_path goal inv) prog) in
let viable_paths = filter (fun (_, (bp, _)) \rightarrow bp >0) paths in exec_paths prog viable_paths
and exec_paths prog paths = match paths with
[] \rightarrow []
pi:: ps \rightarrow (append (exec_path prog pi) (exec_paths prog ps))
and exec_path: program \rightarrow path \rightarrow env list $=$ fun prog (gist, inv) = match gist with
[] \rightarrow [inv]
goal::goals $->$
let envs = call prog envy goal in
let newpaths $=\operatorname{map}(f u n$ e \rightarrow (goals, e)) envies
in (flatten (map (exec_path prog) newpaths))

A Prolog interpreter to compute all solutions (Continued)

```
let find_path: goal -> env -> clause -> path =
    fun goal (bp, subst) clause =
    let (hd::body) = alloc_locals bp clause in
    try let subst' = assign_to_formals hd goal subst
        in (body, (bp+(numvars hd)+(numvarslist body), subst'))
    with Unif_fail -> ([], (-1, subst))
let assign_to_formals hd goal subst: subst = unify subst hd goal
let rec alloc_locals: int -> term list -> term list =
    fun bp ts = let alloc_local t = match t with
    | Var(i) -> Var(bp+i)
    | Nvar(c, ts) -> Nvar(c, alloc_locals bp ts)
    in map alloc_local ts
```


Implementing Backtracking

- Simply replace eager evaluation used in the interpreter with lazy evaluation!
- But OCaml does not support lazy evaluation
- Use a language like Haskell that supports lazy evaluation
- Employ a simple trick to achieve lazy evaluation in OCaml
- The same trick can also be used in any language that supports lambda abstractions!
- That includes C++, JavaScript, Python, ...
- Write a top-level print function that consumes the set of solutions one-at-a-time
- prints the first solution
- based on user input, either terminates or continues in the print/user-input loop.

Lazy Evaluation in OCaml

- Lazy evaluation: suspend actual parameter evaluation until needed
- The expression is stored as a closure that encapsulates the binding of local variables
- Lambda definitions already require this ability
- The body of the function is an expression that needs to be represented as a closure
- Idea: Use lambda definition f_{e} to represent e needing lazy evaluation

$$
\text { fun } f_{e}()->e
$$

- Note: f_{e} takes an empty argument (technically, a zero-tuple, aka unit in OCaml)
- Evaluation of e is suspended, until it is applied to a unit argument

Some types and functions for Lazy Evaluation in OCaml

- A type to represent lazily evaluated expressions type 'a thunk $=$ Thunk of (unit \rightarrow ' a) | Val of 'a
- A function to force evaluation of thunks: let force $v=$ match v with Thunk $x \rightarrow x(0 \mid$ Val $x \rightarrow x$
- A variant of list type that is evaluated lazily type 'a lzlist $=$ Nil \mid Cons of 'a * (' a lzlist thunk)
- To operate on such lazy lists, we need to redefine familiar list operations such as append, map, filter, flatten, etc.
- But almost no other changes needed to the interpreter!

Example: Redefining map for lzlist

type 'a thunk $=$ Thunk of (unit \rightarrow 'a) \mid Val of 'a
let rec $\operatorname{lzmap}(f: \quad$ ($\mathrm{a} \rightarrow$ 'b) (l: 'a lzlist): 'b lzlist $=$ match 1 with
| Nil \rightarrow Nil
| Cons(l1, ls) \rightarrow
Cons ((f l1), Thunk(fun () \rightarrow map $f(f o r c e ~ l s)))$

A Backtracking Prolog interpreter

```
let rec call: (prog: clause list) (env:env) (goal:goal): env lzlist =
    let paths = (map (find_path goal env) prog) in
    let viable_paths = filter (fun (_, (bp, _)) -> bp > 0) paths
    in exec_paths prog viable_paths
and exec_paths prog paths = match paths with
        [] -> Nil
        p::ps->> (lzappend (exec_path prog p) (Thunk(fun () -> (exec_paths prog ps)))
and exec_path: program }->\mathrm{ path }->\mathrm{ lzenv list =
    fun prog (glist, env) = match glist with
        [] -> Cons(env, Val(Nil))
        goal::goals ->
        let envs = call prog env goal in
        let newpaths = l_map (fun e -> (goals, e)) envs
        in (lzflatten (lzmap (exec_path prog) newpaths))
```


Controlling Search

- If-then-else: Written as (c -> t ; e) where c, t, e are conjunction of atoms. Example:

```
gen(N, L) :-
    (N = O
    -> L = []
        ; M is N-1, gen(M, K), L = [N|R]).
```


Controlling Search (Contd.)

- Pruning: Proof search can be pruned using "!" (cut).
- Cut throws away other choices when more than one clause is applicable.
- Use with care: Prolog's proof process may be hard to understand, and cuts may make the program difficult to comprehend!

```
member(X, [X[_]).
member(X, [Y|Ys]) :-
```

 member(X, Ys).
 Finds elements of a list.
Given X and L , member (X, L) determines whether X is in L or not.
Given L alone, member (X, L) binds X to elements of L (one by one, when backtracking).
member $(X,[X \mid])$:- !. member $(\mathrm{X},[\mathrm{Y} \mid \mathrm{Y} \mathrm{S}])$:member(X, Ys).

Finds whether or not an element is in a list.
Given X and L , member (X, L) determines whether X is in L or not.
Given L alone, member (X, L) binds X to the first element of L .

Change for a dollar

change ([H, Q, D,N, P]) :-

```
member(H,[0,1,2]), /*Half-dollars*/
member(Q,[0,1,2,3,4]), /*quarters*/
member(D,[0,1,2,3,4,5,6,7,8,9,10]), /* dimes */
member(N, [0,1,2,3,4,5,6,7,8,9,10,
    11,12,13,14,15,16,17,18,19,20]),/*nickels*/
```

S is $50 * \mathrm{H}+25 * \mathrm{Q}+10 * \mathrm{D}+5 * \mathrm{~N}$, $S=<100$,
P is 100-S.

Permutation

```
takeout(X,[X|R],R).
takeout(X,[F|R],[F|S]) :- takeout(X,R,S).
perm([],[]).
perm([X|Y],Z) :-perm(Y,W), takeout(X,Z,W).
```


Tree Isomorphism

```
isomorphic(void, void).
isomorphic(tree(Node, Left1, Right1),
            tree(Node, Left2, Right2)) :-
    isomorphic(Left1, Left2),
    isomorphic(Right1, Right2).
isomorphic(tree(Node, Left1, Right1),
            tree(Node, Left2, Right2)) :-
isomorphic(Left1, Right2),
isomorphic(Right1, Left2).
```


Checking/Generating Subtrees

```
subtree(Tree1, Tree2) :-
    isomorphic(Tree1, Tree2).
subtree(Tree1, tree(Node, Left, Right)) :-
    subtree(Tree1, Left); subtree(Tree1, Right).
```


N-Queens

```
solve(P) :-
    perm([1, 2, 3, 4, 5, 6,7, 8],P),
    combine([1, 2, 3,4,5,6,7,8],P,S,D),
    all_diff(S), all_diff(D).
```

combine ([X1|X], [Y1|Y], [S1|S], [D1|D]) :-
S 1 is $\mathrm{X} 1+\mathrm{Y} 1, \mathrm{D} 1$ is $\mathrm{X} 1-\mathrm{Y} 1$,
combine ($\mathrm{X}, \mathrm{Y}, \mathrm{S}, \mathrm{D}$).
combine ([], [], [], []).
all_diff([X|Y]) :- $\+m e m b e r(X, Y), ~ a l l _d i f f(Y)$.
all_diff([X]).

Merge Sort

```
merge_sort([], []).
merge_sort([X], [X]).
merge_sort(List, SortedList) :-
    split(List, First, Second),
    merge_sort(First, SortedFirst),
    merge_sort(Second, SortedSecond),
    merge(SortedFirst, SortedSecond, SortedList).
split([], [], []).
split([X], [X], []).
split([X1,X2|Xs], [X1|Ys], [X2|Zs]) :- split(Xs, Ys, Zs).
```


Merge Sort (Contd.)

```
merge([], X, X).
merge (X, [], X).
merge([X|Xs], [Y|Ys], [X|Zs]) :-
        \(X=<Y\),
        merge(Xs, [Y|Ys], Zs).
merge([X|Xs], [Y|Ys], [Y|Zs]) :-
        \(X>Y\),
        merge([X|Xs], Ys, Zs).
```

