
Introduction Basics Functions Data Structures Overview OCAML Performance

CSE 307: Principles of Programming Languages
Syntax

R. Sekar

1 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Topics

1. Introduction

2. Basics

3. Functions

4. Data Structures

5. Overview

6. OCAML Performance

2 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Section 1

Introduction

3 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Functional Programming

Programs are viewed as functions transforming input to output

Complex transformations are achieved by composing simpler functions (i.e. applying

functions to results of other functions)

Purely Functional Languages: Values given to “variables” do not change when

a program is evaluated

“Variables” are names for values, not names for storage locations.

Functions have referential transparency:

Value of a function depends solely on the values of its arguments

Functions do not have side e�ects.

Order of evaluation of arguments does not a�ect the value of a function’s output.

4 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Functional Programming (Contd.)

Usually support complex (recursive) data types

. . . with automatic allocation and deallocation of memory (e.g. garbage collection)

No loops: recursion is the only way to structure repeated computations

Functions themselves may be treated as values

Higher-order functions: Functions that functions as arguments.

Functions as first-class values: no arbitrary restrictions that distinguish functions from

other data types (e.g. int)

5 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

History

LISP (’60)

Scheme (’80s): a dialect of LISP; more uniform treatment of functions

ML (’80s): Strong typing and type inference

Standard ML (SML, SML/NJ: ’90s)

Categorical Abstract Machine Language (CAML, CAML Light, O’CAML: late ’90s)

Haskell, Gofer, HUGS, . . . (late ’90s): “Lazy” functional programming

6 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

ML

Developed initially as a “meta language” for a theorem proving system (Logic of

Computable Functions)
The two main dialects, SML and CAML, have many features in common:
data type definition, type inference, interactive top-level, . . .

SML and CAML have di�erent syntax for expressing the same things. For example:

In SML: variables are defined using val and functions using fun

In CAML: both variables and functions defined using equations.

Both have multiple implementations (Moscow SML, SML/NJ; CAML, OCAML) with

slightly di�erent usage directives and module systems.

7 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Section 2

Basics

8 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

OCAML

CAML with “object-oriented” features.

Compiler and run-time system that makes OCAML programs run with performance

comparable imperative programs!

A complete development environment including libraries building UIs, networking

(sockets), etc.

We will focus on the non-oo part of OCAML

Standard ML (SML) has more familiar syntax.

CAML has better library and runtime support and has been used in more “real” systems.

9 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

The OCAML System

OCAML interactive toplevel
Invocation:
UNIX: Run ocaml from command line

Windows: Run ocaml.exe from Command window or launch ocamlwin.exe from windows

explorer.

OCAML prompts with \#

User can enter new function/value definitions, evaluate expressions, or issue OCAML

directives at the prompt.

Control-D to exit OCAML

OCAML compiler:

ocamlc to compile OCAML programs to object bytecode.

ocamlopt to compile OCAML programs to native code.
10 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Learning OCAML

We will use OCAML interactive toplevel throughout for examples.

What we type in can be entered into a file (i.e. made into a “program”) and executed.

Read David Matuszek’s tutorial for a quick intro, then go to Jason Hickey’s tutorial. To

clarify syntax etc. see OCAML manual.

(http://caml.inria.fr/tutorials-eng.html)

11 / 63

http://caml.inria.fr/tutorials-eng.html

Introduction Basics Functions Data Structures Overview OCAML Performance

Expression Evaluation

Syntax: 〈expression〉 ;;

Two semicolons indicate the end of expression

Example:

User Input OCAML’s Response

2 * 3;; - : int = 6

OCAML’s response:

‘-’ : The last value entered

‘:’ : is of type

‘int’ : integer

‘=’ : and the value is

‘6’ : 6

12 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Expression Evaluation (Contd.)

More examples:

User Input OCAML’s Response

2 + 3 * 4;; - : int = 14

-2 + 3 * 4;; - : int = 10

(-2 + 3) * 4;; - : int = 4

4.4 ** 2.0;; - : float = 19.36

2 + 2.2;; ... This expression has

type float but is used here

with type int

2.7 + 2.2;; ... This expression has

type float but is used here

with type int

2.7 +. 2.2;; - : float = 4.9

13 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Operators

Operators Types
+

-

*

/

mod

Integer arithmetic

+.

-.

*.

/.

**

Floating point arithmetic

&&, ||, not Boolean operations

14 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Value definitions

Syntax: let 〈name〉 = 〈expression〉 ;;

Examples:

User Input OCAML’s Response

let x = 1;; val x : int = 1

let y = x + 1;; val y : int = 2

let x = x + 1;; val x : int = 3

let z = "OCAML rocks!";; val z : string = "OCAML rocks!"

let w = "21";; val w : string = "21"

let v = int_of_string(w);; val v : int = 21

15 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Section 3

Functions

16 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Functions

Syntax: let 〈name〉 {〈argument〉} = 〈expression〉 ;;

Examples:

User Input OCAML’s Response

let f x = 1;; val f : 'a -> int = <fun>

let g x = x;; val g : 'a -> 'a = <fun>

let inc x = x + 1;; val inc : int -> int = <fun>

let sum(x,y) = x+y;; val sum : int * int -> int = <fun>

let add x y = x+y;; val add : int -> int -> int = <fun>

Note the use of parametric polymorphism in functions f and g

17 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

More example functions

let max(x, y) = val max : 'a * 'a -> 'a = <fun>
if x < y
then y
else x;;

let mul(x, y) = Unbound value mul
if x = 0

then 0
else y+mul(x-1,y);;

let rec mul(x, y) = val mul : int * int -> int = <fun>
if x = 0

then 0
else y+mul(x-1,y);;

let rec mul(x, y) = val mul : int * int -> int = <fun>
if x = 0

then 0
else let i = mul(x-1,y)

in y+i;;
18 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Currying

Named after H.B. Curry

Curried functions take arguments one at a time, as opposed to taking a single tuple

argument

When provided with number of arguments less than the requisite number, result in a

closure

When additional arguments are provided to the closure, it can be evaluated

19 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Currying Example

Tuple version of a function

fun add(x,y) = x+y:int;

val add = fn int * int -> int

Curried version of the same function

fun addc x y = x+y:int;

val addc = fn : int -> int -> int

When addc is given one argument, it yields a function with type int -> int

- add 2 3; - add 2;

it = 5 : int; it = fn : int->int

- it 3;

it = 5 : int 20 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursion

Recursion is the means for iteration

Consider the following examples

fun f(0) = 0

| f(n) = 2*f(n-1);

fun g(0) = 1

| g(1) = 1

| g(n) = g(n-1)+g(n-2);

fun h(0) = 1

| h(n) = 2*h(n div 2);
21 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Section 4

Data Structures

22 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Built-in Data Structures: Lists and Tuples

User Input OCAML’s Response

[1];; - : int list = [1]

[4.1; 2.7; 3.1];; - : float list = [4.1; 2.7; 3.1]

[4.1; 2];; ... This expression has

type int but is used here

with type float

[[1;2]; [4;8;16]];; - : int list list = [[1;2], [4;8;16]]

1::2::[] - : int list = [1; 2]

1::(2::[]) - : int list = [1; 2]

(1,2);; - : int * int = (1, 2)

();; - : unit = ()

let (x,y) = (3,7);; val x : int = 3

val y : int = 7

23 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Tuples

(2,"Andrew") : int * string

(true,3.5,"x") : bool * real * string

((4,2),(7,3)) : (int * int) * (int * int)

Tuple components can be of di�erent types, but lists must contain elements of same

type

[1,2,3] : int list

["Andrew","Ben"] : string list

[(2,3),(2,2),(9,1)] : (int * int) list

[[],[1],[1,2]] : int list list

24 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Pattern Matching

Used to “deconstruct” data structures.

Example:

let rec sumlist l =

match l with

[] -> 0

| x::xs -> x + sumlist(xs);;

When evaluating sumlist [2; 5]

The argument [2; 5] matches the pattern x::xs,

. . . setting x to 2 and xs to [5]

. . . then evaluates 2 + sumlist([5])

25 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Pattern Matching (Contd.)

match is analogous to a “switch” statement
Each case describes
a pattern (lhs of ‘->’) and

an expression to be evaluated if that pattern is matched (rhs of ‘->’)

patterns can be constants, or terms made up of constants and variables

The di�erent cases are separated by ‘|’

A matching pattern is found by searching in order (first case to last case)

The first matching case is selected; others are discarded

let emptyList l =

match l with

[] -> true

| _ -> false;;

26 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Pattern Syntax

Pattern syntax:

Patterns may contain “wildcards” (i.e. ‘_’); each occurrence of a wildcard is treated as a new

anonymous variable.

Patterns are linear: any variable in a pattern can occur at most once.

Pattern matching is used very often in OCAML programs.

OCAML gives a shortcut for defining pattern matching in functions with one

argument. Example:

let rec sumlist l =

match l with

[] -> 0

| x::xs -> x +

sumlist(xs);;

let rec sumlist =

function

[] -> 0

| x::xs -> x +

sumlist(xs);;
27 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Functions on Lists

Add one list to the end of another:

let rec append v1 v2 =

match v1 with

[] -> v2

| x::xs -> x::(append xs v2);;

Note that this function has type
append: 'a list -> 'a list -> 'a list

and hence can be used to concatenate arbitrary lists, as long as the list elements are of the

same type.

This function is implemented by builtin operator @

28 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Functions on Lists (Contd.)

Many list-processing functions are available in module Lists. Examples:

Lists.hd: get the first element of the given list

Lists.rev: reverse the given list

29 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

User-defined Types

Enumerated types:

A finite set of values

Two values can be compared for equality

There is no order among values

Example:

type primaryColor = RED | GREEN | BLUE;;

type status = Freshman | Sophomore | Junior | Senior;;

Syntax: type 〈name〉 = 〈name〉 {| 〈name〉 } ;;
A note about names:
Names of constants must begin with an uppercase letter.

Names of types, functions and variables must begin with a lowercase letter.

Names of constants are global within a module and not local to its type.
30 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Record types

Used to define structures with named fields. Example:

type student = {name:string;

gpa:float; year:status;};;

Syntax: type 〈name〉 = { { 〈name〉 {: 〈name〉 ; } } ;;

Usage:
Creating records:
let joe = {name="Joe"; gpa=2.67; year=Sophomore;};;

Accessing fields:

let x = joe.gpa;; (* using "." operator *)

let {id=x} = joe;; (* using pattern matching *)

Field names are global within a module and not local to its type.

31 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Union types

Used to define (possibly recursive) structured data with tags. Example:

type iTree = Node of int * iTree * iTree | Empty;;

The empty tree is denoted by Empty

The tree with one node, with integer 2, is denoted by Node(2,Empty,Empty)

Tree Denoted by

1

↙ ↘
2 3

↙ ↘ ↘
4 5 6

Node(1,

Node(2,

Node(4, Empty, Empty),

Node(5, Empty, Empty))

Node(3,

Empty,

Node(6, Empty, Empty))) 32 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Union Types (Contd.)

Generalizes enumerated types

Constants that tag the di�erent structures in an union (e.g. Node and Empty) are

called data constructors.

Usage example: counting the number of elements in a tree:

let rec nelems tree =

match tree with

Node(i, lst, rst) ->

(* `i' is the value of the node;

`lst' is the left sub tree; and

`rst' is the right sub tree *)

1 + nelems lst + nelems rst

| Empty -> 0;;
33 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursive Types

Direct definition of recursive types is supported in SML using datatype declarations.

- datatype intBtree =

LEAF of int

| NODE of int * intBtree * intBtree;

datatype intBtree =

LEAF of int

| NODE of int * intBtree * intBtree

We are defining a binary tree type inductively:

Base case: a binary tree with one node, called a LEAF

Induction case: construct a binary tree by constructing a new node that sores an integer

value, and has two other binary trees as children
34 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursive Types (Contd.)

We may construct values of this type as follows:

- val l = LEAF(1);

val l = LEAF 1 : intBtree

- val r = LEAF(3);

val r = LEAF 3 : intBtree

- val n = NODE(2, l, r);

val n = NODE (2,LEAF 1,LEAF 3) : intBtree

35 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursive Types (Contd.)

Types can be mutually recursive. Consider:

-datatype expr = PLUS of expr * expr |
= PROD of expr * expr |
= FUN of (string * exprs) |
= IVAL of int
=and
= exprs = EMPTY
= | LIST of expr * exprs;
datatype expr = FUN of string * exprs

| PLUS of expr * expr
| PROD of expr * expr

datatype exprs = EMPTY | LIST of expr * exprs

The key word and is used for mutually recursive type definitions.
36 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursive Types (Contd.)

We could also have defined expressions using the predefined list type:

- datatype expr=PLUS of expr*expr|PROD of expr*expr

= |FUN of string * expr list;

datatype expr

= FUN of string * expr list | PLUS of expr * expr

| PROD of expr * expr

Examples: The expression 3 + (4 * 5) can be represented as a value of the above

datatype expr as follows

37 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursive Types (Contd.)

The following picture illustrates the structure of the value pl and how it is

constructed from other values.

val v3 = IVAL(3);

val v5 = IVAL(5);

val v4 = IVAL(4);

val pr = PROD(v5, v4);

val pl = PLUS(v3, pr);

38 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursive Types (Contd.)

Similarly, f(2,4,1) can be represented as:

val a1 = EMPTY;

val a2 = ARG(IVAL(4), a1);

val a3 = ARG(IVAL(2), a2);

val fv = FUN("f", a3);

Note the use of expr list to refer to a list that consists of elements of type expr

39 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Polymorphic Data Structures

Structures whose components may be of arbitrary types. Example:

type 'a tree = Node of 'a * 'a tree * 'a tree | Empty;;

'a in the above example is a type variable . . . analogous to the typename parameters of a

C++ template

Parameteric polymorphism enforces that all elements of the tree are of the same type.

Usage example: traversing a tree in preorder:

let rec preorder tree =

match tree with

Node(i, lst, rst) -> i::(preorder lst)@(preorder rst)

| Empty -> [];;

40 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Parameterized Types

type (<typeParameters>) <typeName> = <typeExpression>

type ('a, 'b) pairList = ('a * 'b) list;

Datatype declarations for parameterized data types: Define Btree:

- datatype ('a,'b) Btree = LEAF of 'a

| NODE of 'b * ('a,'b) Btree * ('a,'b) Btree;

datatype ('a,'b) Btree = LEAF of 'a

| NODE of 'b * ('a,'b) Btree * ('a,'b) Btree

- type intBTree = (int, int) Btree;

type intBTree = (int,int) Btree

41 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Example Functions and their Type

- fun leftmost(LEAF(x)) = x

= | leftmost(NODE(y, l, r)) = leftmost(l);

val leftmost = fn : ('a,'b) Btree -> 'a

- fun discriminants(LEAF(x)) = nil

= | discriminants(NODE(y, l, r)) =

= let

= val l1 = discriminants(l)

= val l2 = discriminants(r)

= in

= l1 @ (y::l2) (* â��@â�� is list concatenation operator *)

= end;

val discriminants = fn : ('a,'b) Btree -> 'b list
42 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Example Functions (Contd.)

- fun append(x::xs, y) = x::append(xs, y)

= | append(nil, y) = y;

val append = fn : 'a list * 'a list -> 'a list

- fun f(x::xs, y) = x::f(xs, y)

= | f(nil, y) = nil;

val f = fn : 'a list * 'b -> 'a list

SML Operators that restrict polymorphism:

Arithmetic, relational, boolean, string, type conversion operators

SML Operators that allow polymorphism

tuple, projection, list, equality (= and <>)

43 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Exceptions

Total function: function is defined for every argument value.

Examples: +, length, etc.

Partial function: function is defined only for a subset of argument values.
Examples: /, Lists.hd, etc. Another example:

(* find the last element in a list *)

let rec last = function

x::[] -> x

| _::xs -> last xs;;

Exceptions can be used to signal invalid arguments.

Failed pattern matching (due to incomplete matches) is signalled with (predefined)

Match_failure exception.

Exceptions also signal unexpected conditions (e.g. I/O errors)
44 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Exceptions (Contd.)

Users can define their own exceptions.

Exceptions can be thrown using raise

(* Exception to signal no elements in a list *)

exception NoElements;;

let rec last = function

[] -> raise NoElements

| x::[] -> x

| _::xs -> last xs;;

45 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Exceptions (Contd.)

Exceptions can be handled using try . . . with.

exception DumbCall;;

let test l y =

try (last l) / y

with

NoElements -> 0

| Division_by_zero -> raise DumbCall;;

46 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Higher Order Functions

Functions that take other functions as arguments, or return newly constructed

functions

fun map f nil = nil

| map f x::xs=(f x)::(map f xs);

Map applies a function to every element of a list

fun filter f nil = nil

| filter f x::xs=

if (f x) then x::(filter f xs)

else (filter f xs)

47 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Higher Order Functions (Contd.)

fun zip f nil nil = nil

| zip f (x::xs) (y::ys)=f(x,y)::(zip f xs ys);

fun reduce f b nil = b

| reduce f b x::xs = f(x, (reduce f b xs));

48 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Examples of Higher Order Functions

Add 1 to every element in list:

let rec add_one = function

[] -> []

| x::xs -> (x+1)::(add_one xs);;

Multiply every element in list by 2:

let rec double = function

[] -> []

| x::xs -> (x*2)::(double xs);;

49 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Examples of Higher Order Functions (Cont.d)

Perform function f on every element in list:

let rec map f = function

[] -> []

| x::xs -> (f x)::(map f xs);;

Now we can write add_one and double as:

let add_one = map ((+) 1);; let double = map ((*) 2);;

50 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

More Examples

Sum all elements in a list Multiply all elements in a list

let rec sumlist = function

[] -> 0

| x::xs -> x + sumlist xs;;

let rec prodlist = function

[] -> 1

| x::xs -> x * prodlist xs;;

Accumulate over a list:

let rec foldr f b = function

(* f is the function to apply at element;

b is the base case value *)

[] -> b

| x::xs -> f x (foldr f b xs);;

51 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

More Examples (Contd.)

Using foldr:

Sum all elements in a list Multiply all elements in a list

let sumlist = foldr (+) 0;; let prodlist = foldr (*) 1;;

52 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Anonymous Functions

You can define an unnamed function

-((fn x => 2*x) 5);

val it=10 : int

Is handy with higher order functions

53 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Section 5

Overview

54 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Summary

OCAML definitions have the following syntax:

〈def 〉 ::= let [rec] 〈letlhs〉 = 〈expr〉

(value definitions)

| type 〈typelhs〉 = 〈typeexpr〉

(type definitions)

| exception definitions . . .

〈letlhs〉 ::= 〈id〉 [{〈pattern〉}]

(patterns specify “parameters”)

〈typelhs〉 ::= [{〈typevar〉}]〈id〉

(typevars specify “parameters”)

OCAML programs are a sequence of definitions separated by ;;
55 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Summary

OCAML expressions have the following syntax:

〈expr〉 ::= 〈const〉
(constants)

| 〈id〉
(value identifiers)

| 〈expr〉 〈op〉 〈expr〉
(expressions with binary operators)

| 〈expr〉 〈expr〉
(function application)

| let [rec] {〈letlhs〉 = 〈expr〉;;}in expr
(let definitions)

| raise 〈expr〉
(throw exception)

56 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Summary (Contd.)

| match expr with 〈case〉 [{ |〈case〉 }]

(pattern matching)

| fun 〈case〉

(function definition)

| function 〈case〉 [{ |〈case〉 }]

(function definition with pattern matching)

| try expr with 〈case〉 [{ |〈case〉 }]

(exception handling)

〈case〉 ::= 〈pattern〉 -> 〈expr〉

(pattern matching case)

57 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Section 6

OCAML Performance

58 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Writing E�cient OCAML Programs

Using recursion to sum all elements in a list:

OCAML C

let rec sumlist = function

[] -> 0

| x::xs -> x + sumlist xs;;

int sumlist(List l) {

if (l == NULL)

return 0;

else

return (l->element) +

sumlist(l->next);

}

Iteratively summing all elements in a list (C):

int acc = 0;

for(l=list; l!=NULL; l = l->next)

acc += l->element; 59 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Writing E�cient OCAML Programs (Contd.)

Recursive summation takes stack space proportional to the length of the list

sumlist([1;2]) =⇒

sumlist([2])

sumlist([1;2]) =⇒

sumlist([])

sumlist([2])

sumlist([1;2])

⇓

3 ⇐=

2

sumlist([1;2]) ⇐=

0

sumlist([2])

sumlist([1;2])

Iterative summation takes constant stack space.
60 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Tail Recursion

let rec last = function
[] -> raise NoElements

| x::[] -> x
| _::xs -> last xs;;

Evaluation of last [1;2;3];;

last([1;2;3]) =⇒

last([2;3])

last([1;2;3]) =⇒

last([3])

last([2;3])

last([1;2;3])

⇓

3 ⇐=

3

last([1;2;3]) ⇐=

3

last([2;3])

last([1;2;3])
61 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Tail Recursion (Contd.)

let rec last = function
[] -> raise NoElements

| x::[] -> x
| _::xs -> last xs;;

Note that when the 3rd pattern matches, the result of last is whatever is the result

of last xs. Such calls are known as tail recursive calls.

Tail recursive calls can be evaluated without extra stack:

last([1;2;3]) =⇒ last([2;3]) =⇒ last([3])

⇓

3
62 / 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Taking E�ciency by the Tail

An e�cient recursive function for summing all elements:

C OCAML

int acc_sumlist(int acc, List l) {
if (l == NULL)

return acc;
else

return acc_sumlist(
acc + (l->element),
l->next);}

int sumlist(List l) {
return acc_sumlist(0, l);}

let rec acc_sumlist acc =
function

[] -> acc
| x::xs -> acc_sumlist

(acc+x)
xs;;

let sumlist l =
acc_sumlist 0 l;;

acc_sumlist(0,[1;2]) ⇒ acc_sumlist(1,[2]) ⇒ acc_sumlist(3,[])

⇓

3
63 / 63

	Introduction
	Basics
	Functions
	Data Structures
	Overview
	OCAML Performance

