R. Sekar

1/63

1. Introduction 4. Data Structures

2. Basics 5. Overview
3. Functions 6. OCAML Performance

2/63

Section 1

3/63

Introduction Basics Functions Data Structures Overview OCAML Performance

Functional Programming

@ Programs are viewed as functions transforming input to output

e Complex transformations are achieved by composing simpler functions (i.e. applying

functions to results of other functions)

@ Purely Functional Languages: Values given to “variables” do not change when
a program is evaluated

e “Variables” are names for values, not names for storage locations.
o Functions have referential transparency.
@ Value of a function depends solely on the values of its arguments

e Functions do not have side effects.
@ Order of evaluation of arguments does not affect the value of a function’s output.

Introduction Basics Functions Data Structures Overview OCAML Performance

Functional Programming (Contd.)

@ Usually support complex (recursive) data types

. with automatic allocation and deallocation of memory (e.g. garbage collection)
@ No loops: recursion is the only way to structure repeated computations

e Functions themselves may be treated as values

e Higher-order functions: Functions that functions as arguments.

o Functions as first-class values: no arbitrary restrictions that distinguish functions from

other data types (e.g. int)

Introduction Basics Functions Data Structures Overview OCAML Performance

History

e LISP ('60)

@ Scheme ('80s): a dialect of LISP; more uniform treatment of functions

@ ML ('80s): Strong typing and type inference
e Standard ML (SML, SML/NJ: '90s)
o Categorical Abstract Machine Language (CAML, CAML Light, O’CAML: late "90s)

e Haskell, Gofer, HUGS, ... (late '90s): “Lazy” functional programming

Introduction Basics Functions Data Structures Overview OCAML Performance

ML

@ Developed initially as a “meta language” for a theorem proving system (Logic of
Computable Functions)

o The two main dialects, SML and CAML, have many features in common:

e data type definition, type inference, interactive top-level, . ..

e SML and CAML have different syntax for expressing the same things. For example:

e In SML: variables are defined using val and functions using fun

e In CAML: both variables and functions defined using equations.

@ Both have multiple implementations (Moscow SML, SML/NJ; CAML, OCAML) with

slightly different usage directives and module systems.

Section 2

8/63

Introduction Basics Functions Data Structures Overview OCAML Performance

OCAML

e CAML with “object-oriented” features.

e Compiler and run-time system that makes OCAML programs run with performance
comparable imperative programs!

@ A complete development environment including libraries building Uls, networking
(sockets), etc.

e We will focus on the non-oo part of OCAML

o Standard ML (SML) has more familiar syntax.
o CAML has better library and runtime support and has been used in more “real” systems.

Introduction Basics Functions Data Structures Overview OCAML Performance

The OCAML System

@ OCAML interactive toplevel

e Invocation:
@ UNIX: Run ocaml from command line
e Windows: Run ocaml.exe from Command window or launch ocamlwin.exe from windows

explorer.
o OCAML prompts with \#
e User can enter new function/value definitions, evaluate expressions, or issue OCAML
directives at the prompt.
e Control-D to exit OCAML

e OCAML compiler:
e ocamlc to compile OCAML programs to object bytecode.

e ocamlopt to compile OCAML programs to native code.

Introduction Basics Functions Data Structures Overview OCAML Performance

Learning OCAML

e We will use OCAML interactive toplevel throughout for examples.
e What we type in can be entered into a file (i.e. made into a “program”) and executed.

@ Read David Matuszek’s tutorial for a quick intro, then go to Jason Hickey’s tutorial. To

clarify syntax etc. see OCAML manual.
(http://caml.inria.fr/tutorials-eng.html)

http://caml.inria.fr/tutorials-eng.html

Introduction Basics Functions Data Structures Overview OCAML Performance

Expression Evaluation

e Syntax: (expression) ;;
@ Two semicolons indicate the end of expression

e Example:

User Input | OCAML's Response
2 % 33 - : int =6
OCAMLs response:

The last value entered

is of type
integer

= : and the value is
‘6’ : 6

Introduction Basics Functions Data Structures Overview OCAML Performance

Expression Evaluation (Contd.)

More examples:

User Input OCAMLs Response

2 + 3 *x 4;; - : int = 14

-2 + 3 x 4;; - : int = 10

(-2 + 3) % 4;; - : int = 4

4.4 xx 2.0;; - : float = 19.36

2 + 2.2;; This expression has
type float but is used here
with type int

2.7 + 2.2;; This expression has

type float but is used here
with type int

- : float = 4.9

13/63

Operators | Types
+
* Integer arithmetic
/
mod
+.
Floating point arithmetic
* %
&%, | |, not | Boolean operations

Introduction Basics Functions Data Structures Overview OCAML Performance

Value definitions

e Syntax: let (name)

e Examples:

= (expression) ; ;

User Input

OCAMLs Response

let x = 1;; val x : int =1

let y = x + 1;; val y int = 2

let x = x + 1;; val x int = 3

let z = "OCAML rocks!";; val z string = "OCAML rocks!'"
let w = "21";; val w string = "21"

let v = int_of_string(w);; | val v int = 21

Section 3

16/63

Introduction Basics Functions Data Structures Overview OCAML Performance

Functions

e Syntax: let (name) {(argument)} = (expression) ;;

e Examples:

User Input OCAMLs Response

let £ x = 1;; val £ : ’a -> int = <fun>

let g x = x3; val g : ’a -> ’a = <fun>

let inc x = x + 1;; val inc : dint -> int = <fun>

let sum(x,y) = x+y;; | val sum : int * int -> int = <fun>
let add x y = x+y;; val add : dint -> int -> int = <fun>

Note the use of parametric polymorphism in functions £ and g

Introduction Basics Functions Data Structures Overview OCAML Performance

More example functions

val max : ’a * ’a -> ’a = <fun>

let max(x, y)
if x <y
then y

else x;;

Unbound value mul

let mul(x, y)
if x =0
then O

else y+mul(x-1,y);;

<fun>

let rec mul(x, y) = val mul : int * int -> int
if x =0
then O

else y+mul(x-1,y);;

let rec mul(x, y) = val mul : int * int -> int = <fun>
if x =0
then 0
else let i = mul(x-1,y)
in y+i;;

18/63

Introduction Basics Functions Data Structures Overview OCAML Performance

Currying

e Named after H.B. Curry

e Curried functions take arguments one at a time, as opposed to taking a single tuple

argument

@ When provided with number of arguments less than the requisite number, result in a

closure

e When additional arguments are provided to the closure, it can be evaluated

Introduction Basics Functions Data Structures Overview OCAML Performance

Currying Example

@ Tuple version of a function
fun add(x,y) = x+y:int;
val add = fn int * int -> int
@ Curried version of the same function
fun addc x y = x+y:int;
val addc = fn : int -> int -> int

@ When addc is given one argument, it yields a function with type int -> int

- add 2 3; - add 2;
it = 5 : int; it = fn : int->int
- it 3;

it = 5 : int

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursion

@ Recursion is the means for iteration

e Consider the following examples

fun £(0) = 0

| f(n) = 2xf(n-1);

fun g(0) =1

| g(1) =1

| gl = gn-1)+g(n-2);
fun h(0) =1

| h(n) = 2%h(n div 2);

Section 4

22163

Introduction Basics Functions Data Structures Overview OCAML Performance

Built-in Data Structures: Lists and Tuples

User Input

OCAMLs Response

[ENIEY: - : int 1list = [1]
A.1g B.78 B.1]88 - : float list = [4.1; 2.7; 3.1]
[4.1; 2];; This expression has

type int but is used here

with type float

[[1;2]; [4;8;16]1];;

- : int list list = [[1;2], [4;8;16]1]

18 828 8 [L1]

- : int list = [1; 2]

1::(2::01) - : int list = [1; 2]
(1,2) ;3 - : int * int = (1, 2)
@33 - : unit = ()

let (x,y) = (3,7);;

val x : int = 3
val y : int =7

23/63

Introduction Basics Functions Data Structures Overview OCAML Performance

Tuples

(2,"Andrew") : int * string
(true,3.5,"x") : bool * real * string
((4,2),(7,3)) : (int * int) * (int * int)

@ Tuple components can be of different types, but lists must contain elements of same
type

[1,2,3] : int list

["Andrew","Ben"] : string list

[(2,3),(2,2),(9,1)] : (int * int) list

[(00,011,01,2]1]1 : int list list

Introduction Basics Functions Data Structures Overview OCAML Performance

Pattern Matching

@ Used to “deconstruct” data structures.

e Example:

let rec sumlist 1
match 1 with
(] -> 0

| x::x8 -> x + sumlist(xs);;

@ When evaluating sumlist [2; 5]
o The argument [2; 5] matches the pattern x: : xs,
e ... setting x to 2 and xs to [5]

e ... then evaluates 2 + sumlist([5])

Introduction Basics Functions Data Structures Overview OCAML Performance

Pattern Matching (Contd.)

e match is analogous to a “switch” statement

o Each case describes

o a pattern (lhs of ‘->’) and

@ an expression to be evaluated if that pattern is matched (rhs of ‘->)

@ patterns can be constants, or terms made up of constants and variables
o The different cases are separated by ‘|’
o A matching pattern is found by searching in order (first case to last case)
o The first matching case is selected; others are discarded

let emptyList 1 =
match 1 with
[1 -> true

| _ -> false;;

Introduction Basics Functions Data Structures Overview OCAML Performance

Pattern Syntax

@ Pattern syntax:

o Patterns may contain “wildcards” (i.e. ‘_"); each occurrence of a wildcard is treated as a new
anonymous variable.

e Patterns are linear: any variable in a pattern can occur at most once.
@ Pattern matching is used very often in OCAML programs.

e OCAML gives a shortcut for defining pattern matching in functions with one
argument. Example:

let rec sumlist 1 = let rec sumlist =
match 1 with function
(] > 0 [l -> 0
| x::x8 -> x + | x::x8 -> x +
sumlist(xs);; sumlist(xs);;

Introduction Basics Functions Data Structures Overview OCAML Performance

Functions on Lists

@ Add one list to the end of another:

let rec append vl v2 =
match vl with
[l -> v2

| x::xs -> x::(append xs v2);;

o Note that this function has type
append: ’a list -> ’a list -> ’a list

and hence can be used to concatenate arbitrary lists, as long as the list elements are of the

same type.
o This function is implemented by builtin operator @

@ Many list-processing functions are available in module Lists. Examples:

e Lists.hd: get the first element of the given list

e Lists.rev: reverse the given list

29/63

Introduction Basics Functions Data Structures Overview OCAML Performance

User-defined Types

e Enumerated types:

A finite set of values

Two values can be compared for equality

There is no order among values

Example:

type primaryColor = RED | GREEN | BLUE;;

type status = Freshman | Sophomore | Junior | Senior;;
Syntax: type (name) = (name) {| (name)} ;;

A note about names:

@ Names of constants must begin with an uppercase letter.

e Names of types, functions and variables must begin with a lowercase letter.

@ Names of constants are global within a module and not local to its type.

Introduction Basics Functions Data Structures Overview OCAML Performance

Record types

e Used to define structures with named fields. Example:

type student = {name:string;

gpa:float; year:status;};;
o Syntax: type (name) = { { (name) {: (name) ; }} ;;

@ Usage:
o Creating records:
let joe = {name="Joe"; gpa=2.67; year=Sophomore;};;
@ Accessing fields:
let x = joe.gpa;; (* using "." operator x)

let {id=x} = joe;; (* using pattern matching *)

@ Field names are global within a module and not local to its type.

Introduction Basics Functions Data Structures Overview OCAML Performance

Union types

@ Used to define (possibly recursive) structured data with tags. Example:
type iTree = Node of int * iTree * iTree | Empty;;
@ The empty tree is denoted by Empty

@ The tree with one node, with integer 2, is denoted by Node (2,Empty,Empty)
Tree Denoted by
1 Node(1,
7 \y Node (2,
2 3 Node (4, Empty, Empty),
v\ Ny Node (5, Empty, Empty))
4 5 6 Node (3,
Empty,
Node (6, Empty, Empty)))

Introduction Basics Functions Data Structures Overview OCAML Performance

Union Types (Contd.)

e Generalizes enumerated types

e Constants that tag the different structures in an union (e.g. Node and Empty) are
called data constructors.
@ Usage example: counting the number of elements in a tree:

let rec nelems tree =
match tree with
Node(i, 1lst, rst) ->
(* ‘i’ is the value of the node;
‘lst’ is the left sub tree; and
‘rst’ is the right sub tree *)
1 + nelems 1lst + nelems rst

| Empty -> 0;;

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursive Types

e Direct definition of recursive types is supported in SML using datatype declarations.

- datatype intBtree =
LEAF of int
| NODE of int * intBtree * intBtree;
datatype intBtree =
LEAF of int
| NODE of int * intBtree * intBtree

@ We are defining a binary tree type inductively:
e Base case: a binary tree with one node, called a LEAF
o Induction case: construct a binary tree by constructing a new node that sores an integer

value, and has two other binary trees as children

34 /63

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursive Types (Contd.)

e We may construct values of this type as follows:

- val 1 = LEAF(1);

val 1 LEAF 1 : intBtree

- val r = LEAF(3);

val r = LEAF 3 : intBtree

- val n = NODE(2, 1, r);

NODE (2,LEAF 1,LEAF 3) : intBtree

val n

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursive Types (Contd.)

e Types can be mutually recursive. Consider:

-datatype expr = PLUS of expr * expr |
= PROD of expr * expr |
= FUN of (string * exprs) |
= IVAL of int
=and
= exprs = EMPTY
= | LIST of expr * exprs;
datatype expr = FUN of string * exprs

| PLUS of expr * expr

| PROD of expr * expr
datatype exprs = EMPTY | LIST of expr * exprs

@ The key word and is used for mutually recursive type definitions.

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursive Types (Contd.)

@ We could also have defined expressions using the predefined list type:

- datatype expr=PLUS of expr*expr|PROD of expr*expr
= |[FUN of string * expr list;
datatype expr
= FUN of string * expr list | PLUS of expr * expr
| PROD of expr * expr

e Examples: The expression 3 + (4 * 5) can be represented as a value of the above

datatype expr as follows

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursive Types (Contd.)

@ The following picture illustrates the structure of the value p1 and how it is
constructed from other values.

Pl ------ > PLUS
/ \
/ \
v3 ---> IVAL PROD <----- pr
| N val v3 = IVAL(3);
| /o val v5 = IVAL(5);
3 /->IVAL IVAL <--- va4 val v4 = IVAL(4);
/ | | val pr = PROD(v5, v4);
v5 | | val pl = PLUS(v3, pr);

5 4

Introduction Basics Functions Data Structures Overview OCAML Performance

Recursive Types (Contd.)

o Similarly, £(2,4,1) can be represented as:

val al = EMPTY;
val a2 = ARG(IVAL(4), al);
val a3 = ARG(IVAL(2), a2);
val fv = FUN("f", a3);

@ Note the use of expr list to refer to a list that consists of elements of type expr

Introduction Basics Functions Data Structures Overview OCAML Performance

Polymorphic Data Structures

@ Structures whose components may be of arbitrary types. Example:
type ’a tree = Node of ’a * ’a tree * ’a tree | Empty;;

@ ’a in the above example is a type variable ... analogous to the typename parameters of a

C++ template

@ Parameteric polymorphism enforces that all elements of the tree are of the same type.
@ Usage example: traversing a tree in preorder:

let rec preorder tree =
match tree with
Node(i, 1lst, rst) -> i::(preorder 1lst)@(preorder rst)
| Empty -> [1;;

Introduction Basics Functions Data Structures Overview OCAML Performance

Parameterized Types

type (<typeParameters>) <typelName> = <typeExpression>
type (’a, ’b) pairlist = (’a * ’b) list;
Datatype declarations for parameterized data types: Define Btree:
- datatype (’a,’b) Btree = LEAF of ’a
| NODE of ’b * (’a,’b) Btree * (’a,’b) Btree;

datatype (’a,’b) Btree = LEAF of ’a
| NODE of ’b * (’a,’b) Btree * (’a,’b) Btree

(int, int) Btree;

(int,int) Btree

- type intBTree

type intBTree

Introduction Basics Functions Data Structures Overview OCAML Performance

Example Functions and their Type

- fun leftmost(LEAF(x)) = x
= | leftmost(NODE(y, 1, r)) = leftmost(l);
val leftmost = fn : (’a,’b) Btree -> ’a

- fun discriminants(LEAF(x)) = nil

| discriminants(NODE(y, 1, r)) =
= let

= val 11 = discriminants(1l)

= val 12

= in

discriminants(r)

= 11 @ (y::12) (* akUeakI is list concatenation operator *)
= end;

val discriminants = fn : (’a,’b) Btree -> ’b list

Introduction Basics Functions Data Structures Overview OCAML Performance

Example Functions (Contd.)

fun append(x::xs, y) = x::append(xs, y)
= | append(nil, y) = y;
val append = fn : ’a list * ’a list -> ’a list

fun f(x::xs, y) = x::f(xs, y)

= | £(nil, y) = nil;
val £ = fn : ’a list * ’b -> ’a list

SML Operators that restrict polymorphism:

o Arithmetic, relational, boolean, string, type conversion operators

SML Operators that allow polymorphism

e tuple, projection, list, equality (= and <>)

Introduction Basics Functions Data Structures Overview OCAML Performance

Exceptions

e Total function: function is defined for every argument value.

Examples: +, length, etc.

e Partial function: function is defined only for a subset of argument values.

o Examples: /, Lists.hd, etc. Another example:
(* find the last element in a list *)
let rec last = function
x::[1 ->x
| _::xs -> last xs;;
o Exceptions can be used to signal invalid arguments.
o Failed pattern matching (due to incomplete matches) is signalled with (predefined)

Match_failure exception.

@ Exceptions also signal unexpected conditions (e.g. /O errors)

44/ 63

Introduction Basics Functions Data Structures Overview OCAML Performance

Exceptions (Contd.)

@ Users can define their own exceptions.
e Exceptions can be thrown using raise

(* Exception to signal no elements in a list *)
exception NoElements;;
let rec last = function
[J -> raise NoElements
| x::[1 ->x

| _::xs -> last xs;;

@ Exceptions can be handled using try ... with.

exception DumbCall;;
let test 1 y =
try (last 1) / y
with
NoElements -> O

| Division_by_zero -> raise DumbCall;;

46/63

Introduction Basics Functions Data Structures Overview OCAML Performance

Higher Order Functions

@ Functions that take other functions as arguments, or return newly constructed
functions
fun map f nil = nil
| map f x::xs=(f x)::(map f xs);
e Map applies a function to every element of a list
fun filter f nil = nil
| filter f x::xs=

if (f x) then x::(filter f xs8)
else (filter f xs)

fun zip f nil nil = nil

| zip £ (x::xs) (y::ys)=f(x,y)::(zip f xs ys);
fun reduce f b nil = b

| reduce f b x::xs = f(x, (reduce f b x8));

48/63

Introduction Basics Functions Data Structures Overview OCAML Performance

Examples of Higher Order Functions

@ Add 1 to every element in list:
let rec add_one = function
(1 -> [1
| x::xs -> (x+1)::(add_one xs);;
@ Multiply every element in list by 2:
let rec double = function
(] -> [

| x::xs -> (x*2)::(double xs);;

49/63

Introduction Basics Functions Data Structures Overview OCAML Performance

Examples of Higher Order Functions (Cont.d)

@ Perform function f on every element in list:

let rec map f = function
(1 -> [
| x::xs -> (f x)::(map £ xs);;
@ Now we can write add_one and double as:

let add_one = map ((+) 1);; let double = map ((*) 2);;

Introduction Basics Functions Data Structures Overview OCAML Performance

More Examples

Sum all elements in a list

Multiply all elements in a list

o | let rec sumlist = function
1 -> 0

| x::xs -> X + sumlist xs;;

let rec prodlist = function
tl -> 1

| x::xs -> x * prodlist xs;;

@ Accumulate over a list:

let rec foldr £ b = function

(x £ is the function to apply at element;

b is the base case value *)
(] -> b

| x::xs8 -> £ x (foldr £ b xs);;

@ Using foldr:

Sum all elements in a list Multiply all elements in a list

let sumlist = foldr (+) 0;;| let prodlist = foldr (*) 1;;

52/63

@ You can define an unnamed function

-((fn x => 2%x) 5);
val it=10 : int

@ Is handy with higher order functions

53/63

Section 5

54/63

Introduction Basics Functions Data Structures Overview OCAML Performance

Summary

e OCAML definitions have the following syntax:
(def) == 1let [rec] (letlhs) = (expr)
(value definitions)
| type (typelhs) = (typeexpr)
(type definitions)

| exception definitions . ..

(letlhs)y == (id) [{(pattern)}]
(patterns specify “parameters”)
(typelhs) = [{{typevar)}](id)

(typevars specify “parameters”)

@ OCAML programs are a sequence of definitions separated by ; ;

@ OCAML expressions have the following syntax:

(const)

(constants)

(id)

(value identifiers)

(expr) (op) (expr)

(expressions with binary operators)
(expr) (expr)

(function application)

let [rec] {{letlhs) = (expr);;}in expr
(let definitions)

raise (expr)

(throw exception)

(case)

match expr with (case) [{ |{case) }]

(pattern matching)

fun (case)

(function definition)

function (case) [{ |(case) }]

(function definition with pattern matching)
try expr with (case) [{ |{case) }]
(exception handling)

(pattern) -> (expr)

(pattern matching case)

57163

Section 6

58/63

Introduction Basics Functions Data Structures Overview OCAML Performance

Writing Efficient OCAML Programs

@ Using recursion to sum all elements in a list:

OCAML C
let rec sumlist = function int sumlist(List 1) {
(1 -> 0 if (1 == NULL)
| x::xs -> x + sumlist xs;; return O;
else

return (l->element) +

sumlist (1->next);

);

e lteratively summing all elements in a list (C):

int acc = 0;
for(l=1ist; 1!=NULL; 1 = 1->next)

acc += l->element;

Introduction Basics Functions Data Structures Overview OCAML Performance

Writing Efficient OCAML Programs (Contd.)

@ Recursive summation takes stack space proportional to the length of the list

sumlist ([])
sumlist ([2]) sumlist ([2])
sumlist([1;2]) N sumlist([1;2]) N sumlist([1;2])
I
0
2 sumlist ([2])
3 . sumlist([1;2]) . sumlist([1;2])

@ Iterative summation takes constant stack space.

Introduction Basics Functions Data Structures Overview OCAML Performance

Tail Recursion

() let rec last = function
[1 -> raise NoElements
| x::[1 ->x
| _::xs -> last xs;;

@ Fvaluation of last [1;2;3];;

last([3])
last([2;31) last ([2;31)
last([1;2;3]) SN last([1;2;3]) N last([1;2;3])
I
3
3 last([2;3]1)
3 - last([1;2;3]) - last([1;2;3]) o6

Introduction Basics Functions Data Structures Overview OCAML Performance

Tail Recursion (Contd.)

@ let rec last = function
[-> raise NoElements
| x::[] ->x
| _::xs -> last xs;;
o Note that when the 3rd pattern matches, the result of last is whatever is the result

of 1last xs. Such calls are known as tail recursive calls.

@ Tail recursive calls can be evaluated without extra stack:

last ([2;3]) last ([3])
U

last([1;2;3])

Introduction Basics Functions Data Structures Overview OCAML Performance

Taking Efficiency by the Tail

@ An efficient recursive function for summing all elements:

int sumlist(List 1) {

1->next);}

return acc_sumlist(0, 1);}

C OCAML
int acc_sumlist(int acc, List 1) {| let rec acc_sumlist acc =
if (1 == NULL) function
return acc; -> acc
else | x::xs -> acc_sumlist
return acc_sumlist((acc+x)
acc + (1->element), XS,

let sumlist 1 =
acc_sumlist O 1;;

acc_sumlist(0,[1;2])

acc_sumlist(1,[2])

acc_sumlist(3,[])

4

	Introduction
	Basics
	Functions
	Data Structures
	Overview
	OCAML Performance

