CSE 307: Principles of Programming Languages Syntax

Topics

1. Intro

Lexical Structure
 Regular expressions
 Finite-State Automata

 Syntactic Structure

Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Section 1

Intro

Syntax Vs Semantics

- Syntax describes the structure of a program
 - Determines which programs are legal
 - Consists of two parts
 - Lexical structure: Structure of words

Distinguish between words in the language from random strings

- Grammar: How words are combined into programs Similar to how English grammar governs the structure of sentences in English
- Programs following syntactic rules may or may not be semantically correct.
 - Compare with grammatically correct but nonsensical English sentences
- Formal mechanisms used to describe syntax and semantics to ensure that a language specification is unambiguous and precise

Meta Languages

- Formal mechanisms are used to describe all allowable programs in a language
 - Backus-Naur Form
 - Grammars
- We need *languages to define languages* (called meta-languages) BNFs, Grammars etc. will be described in meta languages

Section 2

Lexical Structure

Lexical Structure

- Constants and Literals: (6.023e + 23, "Enter:", etc.)
- White space: Typically, blank, tab, or new line characters. Used to separate words, but otherwise ignored
- Special Symbols: "<", ";", etc. Can be used as separator, but not ignored.
- Identifiers: (x, getChar, id_f2)
- Words with prespecified meaning: if, boolean, class.
 - In some languages, these words could also be used as identifiers in this case, they are called keywords as their use is not reserved.

Describing the Lexical Structure

Regular Expressions are used as the meta language.

• (0 | 1 | ... | 9) +

(describes non-negative integer constants)

- Short-hand notations are often used: e.g.,
 - [0-9]+ (one more more occurrences of characters in range [0-9])
 - //.* (two slashes followed by sequence of zero or more non-newline characters) (C++-style single-line comments)

Language of Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet Σ . Let *R* be the set of all regular expressions over Σ . Then,

Empty String : $\epsilon \in R$

```
Unit Strings : \alpha \in \Sigma \Rightarrow \alpha \in R
```

```
Concatenation : r_1, r_2 \in R \Rightarrow r_1r_2 \in R
```

```
Alternative : r_1, r_2 \in R \Rightarrow (r_1 \mid r_2) \in R
```

```
Kleene Closure : r \in R \Rightarrow r^* \in R
```

Regular Expression

- a: stands for the set of strings {a}
- $a \mid b$: stands for the set {a, b}
 - Union of sets corresponding to REs a and b
- ab : stands for the set {ab}
 - Analogous to set *product* on REs for *a* and *b*
 - (a|b)(a|b): stands for the set {aa, ab, ba, bb}.
- a^* : stands for the set $\{\epsilon, a, aa, aaa, \ldots\}$ that contains all strings of zero or more a's.
 - Analogous to *closure* of the product operation.

Regular Expression Examples

- $(a|b)^*$: Set of strings with zero or more a's and zero or more b's:
 - $\{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$
- (a^*b^*) : Set of strings with zero or more a's and zero or more b's such that all a's occur before any b:
 - $\{\epsilon, a, b, aa, ab, bb, aaa, aab, abb, \ldots\}$
- $(a^*b^*)^*$: Set of strings with zero or more a's and zero or more b's: $\{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$

Semantics of Regular Expressions

Semantic Function \mathcal{L} : Maps regular expressions to sets of strings.

$$egin{array}{rll} \mathcal{L}(\epsilon) &=& \{\epsilon\} \ \mathcal{L}(lpha) &=& \{lpha\} & (lpha\in\Sigma) \ \mathcal{L}(r_1\mid r_2) &=& \mathcal{L}(r_1)\cup\mathcal{L}(r_2) \ \mathcal{L}(r_1\; r_2) &=& \mathcal{L}(r_1)\cdot\mathcal{L}(r_2) \ \mathcal{L}(r^*) &=& \{\epsilon\}\cup(\mathcal{L}(r)\cdot\mathcal{L}(r^*)) \end{array}$$

Finite State Automata

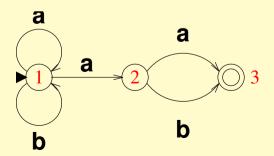
Regular expressions are used for *specification,* while FSA are used for computation. FSAs are represented by a labeled directed graph.

- A finite set of *states* (vertices).
- *Transitions* between states (edges).
- *Labels* on transitions are drawn from $\Sigma \cup \{\epsilon\}$.
- One distinguished *start* state.
- One or more distinguished *final* states.

Finite State Automata: An Example

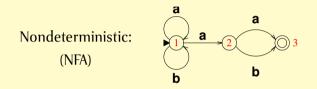
Consider the Regular Expression $(a \mid b)^* a(a \mid b)$. $\mathcal{L}((a \mid b)^* a(a \mid b)) = \{aa, ab, aaa, aab, baa, bab, aaaa, aaab, abaa, abab, baaa, ... \}.$

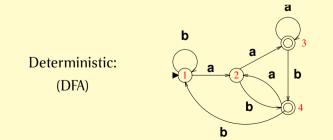
The following (non-deterministic) automaton determines whether an input string belongs to $\mathcal{L}((a \mid b)^* a(a \mid b))$:



Determinism

 $(a | b)^*a(a | b)$:





Lexical Analysis

- Regular expressions describing the lexical structure are converted into a finite-state machine
- This FSM can recognize words very quickly
 - algorithm linear in the size of input program
- Efficient FSMs generated automatically from RE-based definitions
- Lex was the first lexical-analyzer generator
 - Now superceded by Flex (and other similar tools)

Ambiguity Resolution

• Consider a language with lexical definitions

Integer ::=
$$[0-9] + (i.e., [0-9][0-9]*)$$

Identifier ::= $[a-z] * ([a-z]|[0-9])*$

- Consider the string "xx21"
 - Is this to be treated as a single identifier,
 - or as an identifier "xx" followed by an integer 21?
- Need disambiguation rules

Bad: give priority to RE that occurs first in the language specification **Better:** prefer longer matches to shorter ones

Section 3

Syntactic Structure

Syntactic Structure

"How to combine words to form programs"

- Context-free grammars (CFG) and Backus-Naur form (BNF)
 - terminals
 - nonterminals
 - productions of the form nonterminal *rightarrow* sequence of terminals and nonterminals
- EBNF and syntax diagrams

Syntactic (phrase) structure

Context-Free Grammars:

$$E \rightarrow E + E$$
$$E \rightarrow E * E$$
$$E \rightarrow \text{num}$$

- E: Non-terminal symbol
- num, +: Terminal symbol
- $E \rightarrow$ num: Grammar "rule" or *production*
- $\mathcal{L}(E)$: set of strings that can be derived from *E* (Language of *E*)

Grammars and Derivations

$\langle sent \rangle$	\rightarrow	$\langle np angle \ \langle vp angle$
$\langle np angle$	\rightarrow	$\langle art angle \ \langle noun angle$
$\langle art \rangle$	\rightarrow	$a \mid the$
$\langle \mathit{noun} \rangle$	\rightarrow	student test
$\langle vp \rangle$	\rightarrow	$\langle \textit{verb} \rangle \langle \textit{np} \rangle$
$\langle verb \rangle$	\rightarrow	takes ruins

- $\langle sent \rangle \Rightarrow \langle np \rangle \langle vp \rangle$
 - \Rightarrow $\langle art \rangle$ $\langle noun \rangle$ $\langle vp \rangle$
 - \Rightarrow the $\langle \mathit{noun}
 angle \; \langle \mathit{vp}
 angle$
 - \Rightarrow the test $\langle vp
 angle$
- $\langle sent \rangle \Rightarrow \langle np \rangle \langle vp \rangle$

.

- \Rightarrow $\langle np \rangle$ $\langle verb \rangle$ $\langle np \rangle$
- \Rightarrow $\langle np \rangle$ $\langle \texttt{ruins} \rangle$ $\langle np \rangle$
- \Rightarrow $\langle np \rangle$ $\langle ruins \rangle$ $\langle art \rangle$ $\langle noun \rangle$
- $\Rightarrow~\langle np
 angle~\langle {
 m ruins}
 angle~\langle art
 angle~{
 m student}$

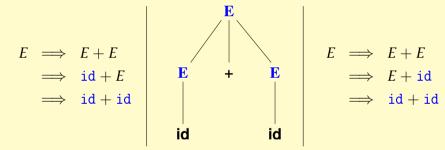
Ambiguity

$$\begin{array}{rcl} E & \rightarrow & E - E \\ E & \rightarrow & \texttt{num} \end{array}$$

num	-	num	-	num			
num	-	num	-	Ε			
num	-	Ε	-	Ε			
num	-	Ε					
Е	_	Ε					
E							
5 - 3 - 1 \equiv 5-(3-1)							

Parse Trees

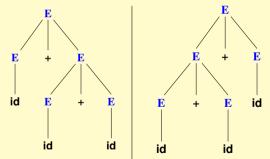
Graphical Representation of Derivations



A Parse Tree succinctly captures the *structure* of a sentence.

Ambiguity (revisited)

A Grammar is **ambiguous** if there are *multiple parse trees* for the same sentence. Example: id + id + id



Associativity and Precedence

- Binary operators may be left-, right-, or non-associative.
- Precedence specifies how tightly arguments are bound to an operator.
- Associativity and precedence are specified to remove ambiguity.
- A sampling of operators in C:

Operator	Associativity
----------	---------------

=	right
11	left
&&	left
÷	÷
-, +	left
*, /, %	left

Parsing

Techniques to determine whether a sentence belongs to a language

- Parsing algorithms are more expensive than recognizers for regular languages.
- Grammar may need to be modified to accomodate parsing algorithms (Recursive descent, LALR, ...).
- Parsers typically build an *abstract syntax tree* which omits syntactic details and preserves the overall structure of a sentence.

e.g.:

Concrete Syntax: $\langle s \rangle \rightarrow \text{while} \langle e \rangle \text{ do } \langle s \rangle$ Abstract Syntax: $s \rightarrow \text{while}(e, s)$

• Abstract syntax are "data types" in an interpreter/compiler.

Grammars in Practice

:

EBNF

Extended BNF: with "regular expression"-like operators to make grammars more concise.

- { *A* }: zero or more occurrences of *A*.
- [*A*]: zero or one occurrence of *A*.
- Additionally, we can write rules of the form

$$\langle s
angle
ightarrow \langle t_1
angle$$
 (a $\mid \langle p
angle$) $\langle t_2
angle$

to represent two rules in BNF:

$$egin{array}{rcl} \langle s
angle &
ightarrow & \langle t_1
angle \; {
m a} \; \langle t_2
angle \ \langle s
angle &
ightarrow \; \langle t_1
angle \; \langle p
angle \; \langle t_2
angle \end{array}$$

EBNF (example)

$$\langle md \rangle \rightarrow [\langle mod \rangle] \langle type \rangle \langle id \rangle (\langle params \rangle) \langle block \rangle \\ \vdots \\ \langle params \rangle \rightarrow \langle param \rangle \{, \langle param \rangle \} \\ \langle params \rangle \rightarrow \langle param \rangle \\ \vdots \\ \langle block \rangle \rightarrow \{ \{ \langle stmt \rangle \} \} \\ \vdots$$