
Intro Lexical Structure Syntactic Structure

CSE 307: Principles of Programming Languages
Syntax

1 / 29

Intro Lexical Structure Syntactic Structure

Topics

1. Intro

2. Lexical Structure

Regular expressions

Finite-State Automata

3. Syntactic Structure

Grammars

Derivations

Ambiguity

Parse Trees

Using Grammars to Describe Syntax

2 / 29

Intro Lexical Structure Syntactic Structure

Section 1

Intro

3 / 29

Intro Lexical Structure Syntactic Structure

Syntax Vs Semantics

Syntax describes the structure of a program

Determines which programs are legal
Consists of two parts
Lexical structure: Structure of words

Distinguish between words in the language from random strings

Grammar: How words are combined into programs

Similar to how English grammar governs the structure of sentences in English

Programs following syntactic rules may or may not be semantically correct.

Compare with grammatically correct but nonsensical English sentences

Formal mechanisms used to describe syntax and semantics to ensure that a language

specification is unambiguous and precise

4 / 29

Intro Lexical Structure Syntactic Structure

Meta Languages

Formal mechanisms are used to describe all allowable programs in a language

Backus-Naur Form

Grammars

We need languages to define languages (called meta-languages)

BNFs, Grammars etc. will be described in meta languages

5 / 29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Section 2

Lexical Structure

6 / 29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Lexical Structure

Constants and Literals: (6.023e + 23, "Enter:", etc.)

White space: Typically, blank, tab, or new line characters. Used to separate words, but

otherwise ignored

Special Symbols: “<”, “;”, etc. Can be used as separator, but not ignored.

Identifiers: (x, getChar, id_f2)

Words with prespecified meaning: if, boolean, class.

In some languages, these words could also be used as identifiers — in

this case, they are called keywords as their use is not reserved.

7 / 29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Describing the Lexical Structure

Regular Expressions are used as the meta language.

(0 | 1 | . . . | 9)+

(describes non-negative integer constants)

Short-hand notations are often used: e.g.,

[0− 9]+ (one more more occurrences of characters in range [0− 9])

//.∗ (two slashes followed by sequence of zero or more non-newline characters)

(C++-style single-line comments)

8 / 29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Language of Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet Σ.

Let R be the set of all regular expressions over Σ. Then,

Empty String : ε ∈ R

Unit Strings : α ∈ Σ⇒ α ∈ R

Concatenation : r1, r2 ∈ R ⇒ r1r2 ∈ R

Alternative : r1, r2 ∈ R ⇒ (r1 | r2) ∈ R

Kleene Closure : r ∈ R ⇒ r∗ ∈ R

9 / 29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Regular Expression

a : stands for the set of strings {a}

a | b : stands for the set {a, b}
Union of sets corresponding to REs a and b

ab : stands for the set {ab}
Analogous to set product on REs for a and b

(a|b)(a|b): stands for the set {aa, ab, ba, bb}.

a∗ : stands for the set {ε, a, aa, aaa, . . .} that contains all strings of zero or more a’s.

Analogous to closure of the product operation.

10 / 29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Regular Expression Examples

(a|b)∗ : Set of strings with zero or more a’s and zero or more b’s:

{ε, a, b, aa, ab, ba, bb, aaa, aab, . . .}

(a∗b∗) : Set of strings with zero or more a’s and zero or more b’s such that all a’s

occur before any b:

{ε, a, b, aa, ab, bb, aaa, aab, abb, . . .}

(a∗b∗)∗ : Set of strings with zero or more a’s and zero or more b’s:

{ε, a, b, aa, ab, ba, bb, aaa, aab, . . .}

11 / 29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Semantics of Regular Expressions

Semantic Function L: Maps regular expressions to sets of strings.

L(ε) = {ε}
L(α) = {α} (α ∈ Σ)

L(r1 | r2) = L(r1) ∪ L(r2)

L(r1 r2) = L(r1) · L(r2)

L(r∗) = {ε} ∪ (L(r) · L(r∗))

12 / 29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Finite State Automata

Regular expressions are used for specification, while FSA are used for computation.

FSAs are represented by a labeled directed graph.

A finite set of states (vertices).

Transitions between states (edges).

Labels on transitions are drawn from Σ ∪ {ε}.

One distinguished start state.

One or more distinguished final states.

13 / 29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Finite State Automata: An Example

Consider the Regular Expression (a | b)∗a(a | b).
L((a | b)∗a(a | b)) = {aa, ab, aaa, aab, baa, bab,

aaaa, aaab, abaa, abab, baaa, . . .}.
The following (non-deterministic) automaton determines whether an input string

belongs to L((a | b)∗a(a | b)):

a

a

b
b

a

1 2 3

14 / 29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Determinism

(a | b)∗a(a | b):

Nondeterministic:

(NFA)

a

a

b
b

a

1 2 3

Deterministic:

(DFA)
a

a

b

b

a

a

b

b

1 2

3

4

15 / 29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Lexical Analysis

Regular expressions describing the lexical structure are converted into a finite-state

machine

This FSM can recognize words very quickly

algorithm linear in the size of input program

E�cient FSMs generated automatically from RE-based definitions

Lex was the first lexical-analyzer generator

Now superceded by Flex (and other similar tools)

16 / 29

Intro Lexical Structure Syntactic Structure Regular expressions Finite-State Automata

Ambiguity Resolution

Consider a language with lexical definitions

Integer ::= [0− 9] + (i.e., [0− 9][0− 9]∗)
Identifier ::= [a − z] ∗ ([a − z]|[0− 9])∗

Consider the string “xx21”

Is this to be treated as a single identifier,

or as an identifier “xx” followed by an integer 21?

Need disambiguation rules

Bad: give priority to RE that occurs first in the language specification

Better: prefer longer matches to shorter ones

17 / 29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Section 3

Syntactic Structure

18 / 29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Syntactic Structure

“How to combine words to form programs”

Context-free grammars (CFG) and Backus-Naur form (BNF)

terminals

nonterminals

productions of the form nonterminal rightarrow sequence of terminals and nonterminals

EBNF and syntax diagrams

19 / 29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Syntactic (phrase) structure

Context-Free Grammars:

E → E + E

E → E ∗ E
E → num

E : Non-terminal symbol

num, +: Terminal symbol

E → num: Grammar “rule” or production

L(E): set of strings that can be derived from E (Language of E)

20 / 29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Grammars and Derivations

〈sent〉 → 〈np〉 〈vp〉

〈np〉 → 〈art〉 〈noun〉

〈art〉 → a | the

〈noun〉 → student | test

〈vp〉 → 〈verb〉 〈np〉

〈verb〉 → takes | ruins

〈sent〉 ⇒ 〈np〉 〈vp〉

⇒ 〈art〉 〈noun〉 〈vp〉

⇒ the 〈noun〉 〈vp〉

⇒ the test 〈vp〉
...

〈sent〉 ⇒ 〈np〉 〈vp〉

⇒ 〈np〉 〈verb〉 〈np〉

⇒ 〈np〉 〈ruins〉 〈np〉

⇒ 〈np〉 〈ruins〉 〈art〉 〈noun〉

⇒ 〈np〉 〈ruins〉 〈art〉 student
...

21 / 29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Ambiguity

E → E − E

E → num

num - num - num

E - num - num

E - E - num

E - num

E - E

E
5 - 3 - 1 ≡ (5-3)-1

num - num - num

num - num - E

num - E - E

num - E

E − E

E
5 - 3 - 1 ≡ 5-(3-1)

22 / 29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Parse Trees

Graphical Representation of Derivations

E =⇒ E + E

=⇒ id + E

=⇒ id + id

id id

+E E

E

E =⇒ E + E

=⇒ E + id

=⇒ id + id

A Parse Tree succinctly captures the structure of a sentence.

23 / 29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Ambiguity (revisited)

A Grammar is ambiguous if there are multiple parse trees for the same sentence.

Example: id + id + id

id

+E E

E

E E

id id

+ id

E

E

E

E E

id id

+

+

24 / 29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Associativity and Precedence

Binary operators may be left-, right-, or non-associative.

Precedence specifies how tightly arguments are bound to an operator.

Associativity and precedence are specified to remove ambiguity.

A sampling of operators in C:
Operator Associativity

= right

|| left

&& left
...

...

-, + left

*, /, % left
25 / 29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Parsing

Techniques to determine whether a sentence belongs to a language

Parsing algorithms are more expensive than recognizers for regular languages.

Grammar may need to be modified to accomodate parsing algorithms (Recursive

descent, LALR, . . .).

Parsers typically build an abstract syntax tree which omits syntactic details and

preserves the overall structure of a sentence.

e.g.:

Concrete Syntax: 〈s〉 →while 〈e〉 do 〈s〉
Abstract Syntax: s→ while(e, s)

Abstract syntax are “data types” in an interpreter/compiler.

26 / 29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

Grammars in Practice

〈md〉 → 〈mod〉 〈type〉 〈id〉 (〈params〉) 〈block〉
...

〈params〉 → 〈param〉,〈params〉
〈params〉 → 〈param〉

...

〈block〉 → { 〈stmts〉 }
〈stmts〉 → 〈stmt〉 〈stmts〉
〈stmts〉 → ε

... 27 / 29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

EBNF

Extended BNF: with “regular expression”-like operators to make grammars more concise.

{ A }: zero or more occurrences of A.

[A]: zero or one occurrence of A.

Additionally, we can write rules of the form

〈s〉 → 〈t1〉 (a | 〈p〉) 〈t2〉
to represent two rules in BNF:

〈s〉 → 〈t1〉 a 〈t2〉
〈s〉 → 〈t1〉 〈p〉 〈t2〉

28 / 29

Intro Lexical Structure Syntactic Structure Grammars Derivations Ambiguity Parse Trees Using Grammars to Describe Syntax

EBNF (example)

〈md〉 → [〈mod〉] 〈type〉 〈id〉 (〈params〉) 〈block〉
...

〈params〉 → 〈param〉 {, 〈param〉}
〈params〉 → 〈param〉

...

〈block〉 → { {〈stmt〉} }
...

29 / 29

	Intro
	Lexical Structure
	Regular expressions
	Finite-State Automata

	Syntactic Structure
	Grammars
	Derivations
	Ambiguity
	Parse Trees
	Using Grammars to Describe Syntax

