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Section 1

Simple/Built-in Types
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Simple Types

Predefined

int, float, double, etc in C

int, bool, float, etc. in OCAML

All other types are constructed, starting from predefined (aka primitive) types
Enumerated:
enum colors {red, green, blue} in C

type colors = Red|Green|Blue in OCAML

type is a keyword in OCAML to introduce new types
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Section 2

Compound Types
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Compound Types

Types constructed from other types using type constructors

Cartesian product (*)

Function types (→)

Union types (∪)
Arrays

Pointers

Recursive types
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Cartesian Product

Let I represent the integer type and R represent real type.

The cross product I × R is defined in the usual manner of product of sets, i.e.,

I × R = {(i, r)|i ∈ I, r ∈ R}
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Product Types (Continued)

Product types correspond to “tuples” in OCAML.

They are not supported in typical imperative languages, except with labels.

Type on previous slide denoted int*float in OCAML.

# let v = (2,3.0);;

val v : int * float = (2, 3.)

# type mytype = int * float;;

type mytype = int * float

Note: type is a keyword to introduce new names (abbreviations) for types already

known to OCAML, or for introducing new types unknown to OCAML.

8 / 57



Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Product Types (Continued)

Cartesian product operator is non-associative:

# let t = (2,3,4.0);;

val t : int * int * float = (2, 3, 4.)

# let s = ((2,3), 4.0);;

val s : (int * int) * float = ((2, 3), 4.)

# let u = (2, (3,4.0));;

val u : int * (int * float) = (2, (3, 4.))

# t = s;;

Error: This expression has type (int * int) * float but an expression was

expected of type int * (int * float)

Note: compiler complains that the types of arguments to equality operator must be

the same, but it is not so in this case.

You will get type error messages if you try to compare s = u or t = u.
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Product Types (Continued)

Note: The equality operator has the type ′t ∗′ t → bool for any type t.
′t is a type variable

Type variable names begin with a ′

Elements of a 2-tuple can be extracted using fst and snd:
# fst(u);;

- : int = 2

# snd(u);;

- : int * float = (3, 4.)

# snd(t);;

Error: This expression has type int * int * float but an expression

was expected of type 'a * 'b

# let third_of_four(_,_, x,_) = x;;

val third_of_four : 'a * 'b * 'c * 'd -> 'c = <fun>

The error message says that t has more than two elements.
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Labeled Product types

In Cartesian products, components of tuples don’t have names.

Instead, they are identified by numbers.

In labeled products each component of a tuple is given a name.

Labeled products are also called records (a language-neutral term)
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Labeled Product types (Continued)

struct is a term that is specific to C and C++
struct t {int a;float b;char *c;}; in C

type t = {a:int; b:float; c:string};; in OCAML

In OCAML, components of a labeled tuple value can be accessed using the dot

notation <identifier>.<field_name>

# type t = { a : int; b : float; c : string; };;

type t = { a : int; b : float; c : string; }

# let m = {a=1;b=2.0;c="abc"};;

val m : t = {a = 1; b = 2.; c = "abc"}

# m.c;;

- : string = "abc"
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Function Types

T1 → T2 is a function type

Type of a function that takes one argument of type T1 and returns type T2

OCAML supports functions as first class values.

They can be created and manipulated by other functions.

In imperative languages such as C/C++, we can pass pointers to functions, but this

does not o�er the same level of flexibility.

E.g., no way for a C-function to dynamically create and return a pointer to a function;

rather, it can return a pointer to an EXISTING function
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OCAML Examples of Function Types

Example

# let f x = x * x;;

val f : int -> int = <fun>

# let g x y = x *. y;;

val g : float -> float -> float = <fun>

Note: g is di�erent from h given below.

g takes two arguments, which can be supplied one at a time

h takes only one argument, which is a tuple with two components.

# let h (x, y) = x *. y;;

val h : float * float -> float = <fun>

# let v = g 3.0;;

val v : float -> float = <fun>
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Function Types (Continued)

Type of g is float -> float -> float.

-> operator is right-associative, so we read the type as float -> (float -> float).

When g is given one argument, it returns a new function value.

g, when given an argument of type float, returns a value of type (float -> float)

# let u = v 2.0;;

val u : float = 6.

When a float argument is given to v, it consumes it and produces an output value of

type float.

v is called a “closure”

It represents a function for which some arguments have been provided, but its evaluation

cannot proceed unless additional arguments are provided.

The closure "remembers" the arguments supplied so far
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Union types

Union types correspond to set unions, just like product types corresponded to

Cartesian products.

-> operator is right-associative, so we read the type as float -> (float -> float).

Unions can be tagged or untagged. C/C++ support only untagged unions:

union v {

int ival;

float fval;

char cval;

};
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Tagged Unions

In untagged unions, there is no way to ensure that the component of the right type is

always accessed.

E.g., an integer value may be stored in the above union, but due to a programming error,

the fval field may be accessed at a later time.

fval doesn’t contain a valid value now, so you get some garbage.

With tagged unions, the compiler can perform checks at runtime to ensure that the

right components are accessed.

Tagged unions are NOT supported in C/C++.
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Tagged Unions (Continued)

Pascal supports tagged unions using VARIANT RECORDs RECORD

CASE b: BOOLEAN OF

TRUE: i: INTEGER; |

FALSE: r: REAL END

END

END

Tagged union is also called a discriminated union
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Tagged Unions (Continued)

Tagged unions are supported in OCAML using type declarations.
# type tt = Floatval of float | Intval of int;;

type tt = Floatval of float | Intval of int

# let v = Floatval (2.0);;

val v : tt = Floatval 2.

# let u = Intval (3);;

val u : tt = Intval 3

# let add (x, y) =

match (x, y) with

(Intval x1, Intval x2) -> Intval(x1+x2)

| (Floatval x1, Floatval x2) -> Floatval(x1+.x2);;

Warning 8: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

(Floatval _, Intval _)

val add : tt * tt -> tt = <fun>
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Tagged Unions (Continued)

Tagged unions are supported in OCAML using type declarations.
# add (u, v);;

Exception: Match_failure ("//toplevel//", 14, 3).

# let w = Intval(3);;

val w : tt = Intval 3

# add(u,w);;

- : tt = Intval 6

Note: we can redefine add as follows so as to permit addition of floats and ints.
# let add (x, y) =

match (x, y) with

(Intval x1, Intval x2) -> Intval(x1 + x2)

| (Floatval x1, Floatval x2) -> Floatval(x1 +. x2)

| (Intval x1, Floatval y1) -> Floatval(float_of_int(x1) +. y1)

| (Floatval x1, Intval y1) -> Floatval(x1 +. float_of_int(y1));;

val add : tt * tt -> tt = <fun>
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Array types

Array construction is denoted by

array(<range>, <elememtType>).

C-declaration

int a[5];

defines a variable a of type array(0-4, int)

A declaration

union tt b[6][7];

declares a variable b of type array(0-4, array(0-6, union tt))

We may not consider range as part of type
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Pointer types

A pointer type will be denoted using the syntax

ptr(<elementType>)

where <elementType> denote the types of the object pointed by a pointer type.

The C-declaration

char *s;

defines a variable s of type ptr(char)

A declaration

int (*f)(int s, float v)

defines a (function) pointer of type ptr(int*float → int)
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Recursive types

Recursive type: a type defined in terms of itself.

Example in C:

struct IntList {

int hd;

intList tl;

};

Does not work:

This definition corresponds to an infinite list.

There is no end, because there is no way to capture the case when the tail has the value

“nil”
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Recursive types (Continued)

Need to express that tail can be nil or be a list.

Try: variant records:

TYPE charlist = RECORD

CASE IsEmpty: BOOLEAN OF

TRUE: /* empty list */ |

FALSE:

data: CHAR;

next: charlist;

END

END

Still problematic: Cannot predict amount of storage needed.
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Recursive types (Continued)

Solution in typical imperative languages:

Use pointer types to implement recursive type:

struct IntList {

int hd;

IntList *tl;

};

Now, tl can be:

a NULL pointer (i.e., nil or empty list)

or point to a nonempty list value

Now, IntList structure occupies only a fixed amount of storage
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Recursive types In OCAML

Direct definition of recursive types is supported in OCAML using type declarations.

Use pointer types to implement recursive type:

# type intBtree =

LEAF of int

| NODE of int * intBtree * intBtree;;

type intBtree = LEAF of int | NODE of int * intBtree * intBtree

We are defining a binary tree type inductively:

Base case: a binary tree with one node, called a LEAF

Induction case: construct a binary tree by constructing a new node that sores an integer

value, and has two other binary trees as children
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Recursive types In OCAML (Continued)

We may construct values of this type as follows:

# let l = LEAF(1);;

val l : intBtree = LEAF 1

# let r = LEAF(3);;

val r : intBtree = LEAF 3

# let n = NODE(2, l, r);;

val n : intBtree = NODE (2, LEAF 1, LEAF 3)
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Recursive types In OCAML (Continued)

Types can be mutually recursive. Consider:

# type expr = PLUS of expr * expr

| PROD of expr * expr

| FUN of (string * exprs)

| IVAL of int

and

exprs= EMPTY |

LIST of expr * exprs;;

type expr =

PLUS of expr * expr

| PROD of expr * expr

| FUN of (string * exprs)

| IVAL of int

and exprs = EMPTY | LIST of expr * exprs

The key word “and” is used for mutually recursive type definitions.
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Recursive types In OCAML (Continued)

We could also have defined expressions using the predefined list type:

# type expr=PLUS of expr*expr

| PROD of expr*expr

| FUN of string * expr list;;

type expr =

PLUS of expr * expr

| PROD of expr * expr

| FUN of string * expr list

Examples: The expression “3 + (4 * 5)” can be represented as a value of the above

type expr as follows
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Recursive types In OCAML (Continued)

The following picture illustrates the structure of the value “pl” and how it is

constructed from other values.

let v3 = IVAL(3);;

let v5 = IVAL(5);;

let v4 = IVAL(4);;

let pr = PROD(v5, v4);;

let pl = PLUS(v3, pr);;
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Recursive types In OCAML (Continued)

Similarly, “f(2,4,1)” can be represented as:

let a1 = EMPTY;;

let a2 = ARG(IVAL(4), a1);;

let a3 = ARG(IVAL(2), a2);;

let fv = FUN("f", a3);;

Note the use of “expr list” to refer to a list that consists of elements of type “expr”
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Section 3

Polymorphism
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Polymorphism

Ability of a function to take arguments of multiple types.

The primary use of polymorphism is code reuse.

Functions that call polymorphic functions can use the same piece of code to operate

on di�erent types of data.
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Overloading (adhoc polymorphism)

Same function NAME used to represent di�erent functions

implementations may be di�erent

arguments may have di�erent types

Example:

operator ’+’ is overloaded in most languages so that they can be used to add integers or

floats.

But implementation of integer addition di�ers from float addition.

Arguments for integer addition or ints, for float addition, they are floats.

Any function name can be overloaded in C++, but not in C.

All virtual functions are in fact overloaded functions.
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Polymorphism & Overloading

Parametric polymorphism:

same function works for arguments of di�erent types

same code is reused for arguments of di�erent types.

allows reuse of “client” code (i.e., code that calls a polymorphic function) as well

Overloading:

due to di�erences in implementation of overloaded functions, there is no code reuse in

their implementation

but client code is reused
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Parametric polymorphism in C++

Example:

template <class C>

Type min(const C* a, int size, C minval) {

for (int i = 0; i < size; i++)

if (a[i] < minval)

minval = a[i];

return minval;

}

Note: same code used for arrays of any type.

The only requirement is that the type support the “<” and “=” operations

The above function is parameterized wrt class C

Hence the term “parametric polymorphism”.

Unlike C++, C does not support templates.
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Code reuse with Parametric Polymorphism

With parametric polymorphism, same function body reused with di�erent types.

Basic property:

does not need to "look below" a certain level

E.g., min function above did not need to look inside each array element.

Similarly, one can think of length and append functions that operate on linked lists of all

types, without looking at element type.
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Code reuse with overloading

No reuse of the overloaded function

there is a di�erent function body corresponding to each argument type.

But client code that calls a overloaded function can be reused.

Example

Let C be a class, with subclasses C1,...,Cn.

Let f be a virtual method of class C

We can now write client code that can apply the function f uniformly to elements of an

array, each of which is a pointer to an object of type C1,...,Cn.
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Example

Example:

void g(int size, C *a[]) {

for (int i = 0; i < size; i++)

a[i]->f(...);

}

Now, the body of function g (which is a client of the function f) can be reused for

arrays that contain objects of type C1 or C2 or ... or Cn,or even a mixture of these

types.
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Parameterized Types

Type declarations for parameterized data types:

type (<typeParameters>) <typeName> = <typeExpression>

type ('a, 'b) pairList = ('a * 'b) list;;

Define Btree:
# type ('a,'b) btree = LEAF of 'a

| NODE of 'b * ('a,'b) btree * ('a,'b) btree;;

type ('a, 'b) btree =

LEAF of 'a

| NODE of 'b * ('a, 'b) btree * ('a, 'b) btree

# type intBTree = (int, int) btree;;

type intBTree = (int, int) btree
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Example Functions and their Type

# let rec leftmost(x) =

match x with

LEAF(x1) -> x1

| NODE(y, l, r) -> leftmost(l);;

val leftmost : ('a, 'b) btree -> 'a = <fun>

# let rec discriminants(x) =

match x with

LEAF(x1) -> []

| NODE(y,l,r) -> let l1 = discriminants(l)

in let l2 = discriminants(r) in l1@(y::l2);;

val discriminants : ('a list, 'b) btree -> 'b list = <fun>
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Example Functions (Continued)

# let rec append(x,y) =

match x with

x1::xs -> x1::append(xs,y)

| [] -> y;;

val append : 'a list * 'a list -> 'a list = <fun>

# let rec f(x,y) =

match x with

x1::xs -> x1::f(xs,y)

| [] -> [];;

val f : 'a list * 'b -> 'a list = <fun>

OCAML Operators that restrict polymorphism:

Arithmetic, relational, boolean, string, type conversion operators

OCAML Operators that allow polymorphism

tuple, projection, list, equality (= and <>)
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Section 4

Type Equivalence
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Type Equivalence

Structural equivalence: two types are equivalent if they are defined by identical type

expressions.

array ranges usually not considered as part of the type

record labels are considered part of the type.

Name equivalence: two types are equal if they have the same name.

Declaration equivalence: two types are equivalent if their declarations lead back to

the same original type expression by a series of redeclarations.
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Type Equivalence (contd.)

Structural equivalence is the least restrictive

Name equivalence is the most restrictive.

Declaration equivalence is in between

TYPE t1 = ARRAY [1..10] of INTEGER; VAR v1: ARRAY [1..10] OF INTEGER;

TYPE t2 = t1; VAR v3,v4: t1; VAR v2: ARRAY [1..10] OF INTEGER;

Structurally equivalent? Declaration equivalent? Name equivalent?

t1,t2 Yes Yes No

v1,v2 Yes No No

v3,v4 Yes Yes Yes
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Declaration equivalence

In Pascal, Modula use decl equivalence

In C

Declequivusedforstructsandunions

Structualequivalenceforothertypes.

struct { int a ; float b ;} x ;

struct { int a; float b; }y;

x and y are structure equivalent but not declaration equivalent. typedef int* intp ;

typedef int** intpp ;

intpp v1 ;

intp *v2 ;

v1 and v2 are structure equivalent.
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Section 5

Type Compatibility
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Type Compatibility

Weaker notion than type equivalence

Notion of compatibility di�ers across operators

Example: assignment operator:

v = expr is OK if <expr> is type-compatible with v.

If the type of expr is a Subtype of the type of v, then there is compatibility.

Other examples:

In most languages, assigning integer value to a float variable is permitted, since integer is a

subtype of float.

In OO-languages such as Java, an object of a derived type can be assigned to an object of

the base type.

48 / 57



Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Type Compatibility (Continued)

Procedure parameter passing uses the same notion of compatibility as assignment
Note: procedure call is a 2-step process
assignment of actual parameter expressions to the formal parameters of the procedure

execution of the procedure body

Formal parameters are the parameter names that appear in the function declaration.

Actual parameters are the expressions that appear at the point of function call.
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Section 6

Type Checking
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Type Checking

Static (compile time)
Benefits
no run-time overhead

programs safer/more robust

Dynamic (run-time)
Disadvantages
runtime overhead for maintaining type info at runtime

performing type checks at runtime

Benefits
more flexible/more expressive
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Examples of Static and Dynamic Type Checking

C++ allows

casting of subclass to superclass (always type-safe)

superclass to subclass (not necessarily type-safe) âĂŞ but no way to check since C++ is

statically typed.

Java uses combination of static and dynamic type-checking to catch unsafe casts (and

array accesses) at runtime.
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Type Checking (Continued)

Type checking relies on type compatibility and type inference rules.

Type inference rules are used to infer types of expressions. e.g., type of (a+b)+c is

inferred from type of a, b and c and the inference rule for operator ‘+‘.

Type inference rules typically operate on a bottom-up fashion.

Example: (a+b)+c

+:float

c:float+:float

b:floata:int
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Type Checking (Continued)

In OCAML, type inference rules capture bottom-up and top-down flow of type info.

Example of Top-down: let f x y:float*int = (x, y)

f:float*int

y:intx:float

Here types of x and y inferred from return type of f.

Note: Most of the time OCAML programs don’t require type declaration.

But it really helps to include them: programs are more readable, and most important, you

get far fewer hard-to-interpret type error messages.
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Strong Vs Weak Typing

Strongly typed language: such languages will execute without producing uncaught

type errors at runtime.
no invalid memory access
no seg fault

array index out of range

access of null pointer

No invalid type casts

Weakly typed: uncaught type errors can lead to undefined behavior at runtime

In practice, these terms used in a relative sense

Strong typing does not imply static typing
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Type Conversion

Explicit: Functions are used to perform conversion.

example: strtol, atoi, itoa in C; float and int etc.

Implicit conversion (coercion)
example:
If a is float and b is int then type of a+b is float

Before doing the addition, b must be converted to a float value. This conversion is done

automatically.

Casting (as in C)

Invisible “conversion:” in untagged unions
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Data Types Summary

Simple/built-in types

Compound types (and their type expressions)
Product, union, recursive, array, pointer

Parametric Vs subtype polymorphism, Code reuse

Polymorphism in OCAML, C++,

Type equivalence
Name, structure and declaration equivalence

Type compatibility

Type inference, type-checking, type-coercion

Strong Vs Weak, Static Vs Dynamic typing
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