Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Phases of Syntax Analysis

1. Identify the words: Lexical Analysis.

Converts a stream of characters (input program) into a stream of tokens.

Also called Scanning or Tokenizing.

2. ldentify the sentences: Parsing.

Derive the structure of sentences: construct parse trees from a stream of tokens.

1/81

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Lexical Analysis

Convert a stream of characters into a stream of tokens.
e Simplicity: Conventions about “words” are often different from conventions about

[»
sentences’.

e Efficiency: Word identification problem has a much more efficient solution than

sentence identification problem.

e Portability: Character set, special characters, device features.

2/81

[~ =
e Token: Name given to a family of words. e.gl, integer_constant
O——— _)
ctual sequence of characters representing a word. e.g., 32894
- == A—,

e Pattern: Notation used to identify the set of lexemes represented by a token. e.g.,
[0 — 9]+

3/81

R

R

R

R

R

R

R

R

A few more examples:

integer_constant ¢

[aN

Cidentifi

: 32894?!—_’(i093,10
uffer size

Token Sample Lexemes | Pattern
(whi!e) while while

i-—|e)[0 —9]+)
a— zA — Z@

—

4/81

R

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Patterns

How do we compactly represent the set of all lexemes corresponding to a token?

For instance:
The token integer_constant represents the set of all integers: that is, all sequences of digits

(0-9), preceded by an optional sign (+ or —).

Obviously, we cannot simply enumerate all lexemes.

Use Regular Expressions.

5/81

Let R be the set of all regular expressions over .. Then,

Empty String: € € R

Unit Strings:a € X = a € R
S

Concatenation: r;, r, € R €R

Alternative: ri,r, € R=(r; |) € R
—

Kleene Closure: r € R :>L* €R

6/81

R

R

R

R

R

R

R

R

R

Semantic Function L : Maps regular expressions to sets of strings.
£ = {& o
L(a) = {o} (a€T) |
EW_%) UL(R) «— Sed wNISYVv
L(nn) = Z?’-ﬁ) : EFE;:)s s sSet FYGU&U\CA/
—— —_— ==
@) = T &) «—
o(Cfr) * i Cr)
Loy L) (D

7/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

fo - (o)
L{a|b) = L(a)UL(b)
= {a}Ui_b_}_
= "{a.b} &

j——

8/81

R

R

R

R

R

R

L(a) = {a}
L(a|b) = L(a)UL(b)
= {apu{b}

= {a,b}

L(ab) =

L(ab £(a) - £(b)

= {ab}

9/81

R

R

L(a) = {a}
L(a|b) = L(a)UL(b)
= {aju{b}
L(ab) = L(a)- L(b)
= {a}-{b}
= {ab}
L((a|b)a|b)) = L(a]b) L(a]b)
= {aa,ab,ba,bb}
i i St

10/81

R

R

R

R

R

11/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Example: L((a | b)*) -
= {et U(L(a] b)- L((a]| b)*

— Ly, = {¢} Base case
L= {dulfab)-L)
= {efu({a,b}-{e})

L = {eU({ab}-L)
= {eyU({ab}-{ea,b})

= {e a,b,aa,ab,ba,bb}

12/81

R

R

R

R

R

R

R

R

L(a")
L(b*)
L(a*b*)

L((a"b")")
P

{¢,a,aa,...} =

{€,a,b(aa, ab,bb, aaa, aab, abb, bb

{e}

U {¢,a,b, aa, ab,bb, aaa, aab, abb, bbb, ...}

U {e,a,b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, ...}

{¢,a,b,aa,ab,ba,bb,...}
_—

13/81

R

R

R

R

R

R

R

R

R

R

R

R

Assign “names” to regular expressions.

£
(digity —(0]1] |9

For example,

natural — digi

SHORTHANDS: - \F/
. . *
e a': Set of strings with one or more occurrences of a. = v.Y

e a’: Set of strings with zero or one occurrences of a.
Example: —
integer —)\ (+]—)digit*
,_/————’—»_———-

(et Cr 1ol el)¢l 1l -1

14/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

float —— integer . fraction =*—

integery, — (+|—)7 no_leading_zero

—> —Ulo_n;ero_digit digit*) @ ol

fraction — {no_trailing_zerolexponent’

il e — (e digit) (0)
no_trailing_zero igit" nonzero_digit) A
exponent — (E | e) integer A L‘_
digit — 0]1]---]9
o O (4
nonzero_digit — 1]2|---|9
[R B

N 5.5 X h

15/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions specify sets of strings over an input alphabet.
@ They can hence be used to specify the set of lexemes associated with a token.
> Used as the pattern language
How do we decide whether an input string belongs to the set of strings specified by a

regular expression?

16/81

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Lexical Analysis

@ Regular Expressions and Definitions are used to specify the set of strings (lexemes)

corresponding to a token.
® An automaton (DFA/NFA) is built from the above specifications.

e Each final state is associated with an action: emit the corresponding token.

17/81

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits

separated by a decimal point).

<:Si;ilf::> { réemit (INTEGER_CONSTANT) }
ﬁ —
I

e ———

[0-9]+"."[0-9]+ { emit (FLOAT_CONSTANT); }

. ,%INTEGER,CONSTANT
0-9 m
€ o=

LOAT CONSTANT

18/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Lex

Tool for building lexical analyzers. j 5.8 k G7 NIV,
Input: lexical specifications (. 1 file) ~— /“D\K
Output: C function (yylex) that returns a token on each invocation. N,

2_NTYN
%% ?K%ng
[0-9]+ { return(INTEGER_CONSTANT); }
_—
[0-9]+"."[0-9]+ { return(FLOAT_CONSTANT); }

—

Tokens are simply integers (#define’s).

19/81

R

R

R

R

R

R

R

%{
C/C++ header statements for inclusion @-’—}ﬂ/’

%} —
Regular Definitions e.g. :DQ_%H—IW PY\%W‘
digit [0-9] . Ap KME
%% — Dr’: 1424)<

Token Specifications e.g.: (’) /Q/

{digit}+ { return(INTEGER_CONSTANT); }

%% j ﬂ

Support functions in C

20/81

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Regular Expressions in Lex

v, 7

7
Adds “syntactic sugar” to regular expressions:

e Range: [0-7]: Integers from 0 through 7 (inclusive) [/‘ ~7}

[a-nx-zA-Q]: Letters a thru n, x thru z and A thru Q. E]
— — — O~ %

—

e Exception: [@/]: Any character other than /. [LA
G

e Definition: {digit}: Use the previously specified regular definition digit.

—
e Special characters: Connectives of regular expression, convenience features.

eg: | * A Ay . E/\ij

21/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Special Characters in Lex

ame as in regular expressions

[] Enclose ranges and exceptions
Fnclose “names” of regular definitions
Used to negate a specified range (in Exception)
Match any single character except newline

\ mharacter
ﬁl, \t " Newline and Tab
For literal matching, enclose special characters in double quotes (") e.g.: "* "

Or use \ to escape. e.g.: \ A

22/81

R

R

R

R

R

R

R

R

R

R

R

Examples

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

for Sequence of f, o, r
" C-style OR operator (two vert. bars)
St Sequence of non-newline characters
[~*/]+ Sequence of characters except * and /
\"[Am]EA" Sequence of non-quote characters
beginning and ending with a quote
({letter}|"_") ({letter} | {digit}|"_")~

C-style identifiers

’?@5 [X

Vpere—
WMH@

rPCcre

23/81

R

R

R

R

include <stdio.h>
#include "tokens.h"
%}

digit [0-9]
hexdigit [0-9a-f]
%%

"+"

{digit}+"."{digit}+

%%

{ return(INTEGER_CON STAEL; }
{ return(FLOAT_CONSTANT); }
{ return(SYNTAX_ERROR) ;

24/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Actions are attached to final states.

e Distinguish the different final states. _——

@ Used ta return tokens.-
-

@ Can be used to set attri

25/81

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Attributes

Additional information about a token’

@ Stored in variable yylval 0<Q)<@WWZ/

@ Type of attributes (usually‘a union) specified by YYSTYPE

e Additional variables:
o yytext: Lexeme (Actual text string)
e yyleng: length of string in yytext
> yylineno: Current line number (number of ‘\n’ seen thus far)
o enabled by %zoption yylineno

26/81

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Priority of matching

What if an input string matches more than one pattern?

{ return(TOKEN_IF); }
—

{ return(TOKEN_ID); }

{ return(TOKEN_WHILE) ;

}
@ A pattern that matches the longest string is chosen. s
P ongest string e
Example:/ifis/is matched with an identifier, not the keyword if.

RN

e Of patterns that match strings of same length, the first (from the top of file) is
chosen. J@i\/“,/lé/ Wod)

Disoen '\LD\Lj LAQAT\B*/\/

27/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Constructing Scanners using (f£) lex

@ Scanner specifications: specifications. 1
(f)lex
specifications.1 —— lex.yy.c & —

@ Generated scannerin lex.yy.c

(g)ec
lex.yy.c ——— e(‘egit_gle_
o yywrap (): hook for signalling end of file.

o Use -1f1 (flex) or -11 (lex) flags at link time to include default function yywrap () that

always returns 1.

28/81

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Recognizers

Construct automata that recognize strings belonging to a language.
L. —_—
o Finite State Automata = Regular Languages

> Finite State — cannot maintain arbitrary counts.

@ Push Down Automata = Context-free Languages

> Stack is used to maintain counter, but only one counter can go arbitrarily high.

29/81

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Finite State Automata

Represented by a labeled directed graph.

o A finite set of states (vertices).
— —_—

Transitions between states (edges). >

Labels on transitions are drawn from ¥ U {¢}.

—_—

One distinguished start state.

—

One or more distinguished final states.

—_—

30/81

R

R

R

R

R

R

R

R

R

R

Consider the Regular Expression (a | b)*a(a | b).
L((a| b)*a(a | b)) = {aa, ab, aaa, aab,baa, bab,

aaaa, aaab, abaa, abab, baaa,...}.

31/81

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Finite State Automata: An Example

aaaa, aaab, abaa, abab,baaa,. #}
The following automaton determines whether an input string belongs to

L((a]| b)*a(a | b):

32/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

(a | b)*a(a | b):
a
Nondeterministic: '
(1) ,9©
(NFA) ‘ - =

@/ Deterministic:

(DFA)

33/81

R

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

if beginning from the start state

we can trace some path through the automaton
such that the sequence of edge labels spells x

and end in a final state.
Or, there exists a path in the graph from the start state to a final state such that the

sequence of labels on the path spells out x

34/81

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.
o NFA may have transitions labeled by e.

(Spontaneous transitions)

All transition labels in a DFA belong to .
e For some string x, there may be many accepting paths in an NFA.

e For all strings x, there is one unique accepting path in a DFA.

Usually, an input string can be recognized faster with a DFA.

NFAs are typically smaller than the corresponding DFAs.

35/81

R

R = Size of Regular Expressio

N = Length of Input String

per input string

NFA DFA
Size of
Automaton R
Recognition time O(N xR | O(N) h

36/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Thompson’s Construction: For every regular expression r, derive an NFA N(r) with

unique start and final states.

Brpe
aEYX ¥ 40
wER 00

37/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Lol o

€ : L€

38/81

R

R

R

R

R

(a | b)a(a | b):

39/81

@ We just saw that every RE can be converted into an equivalent NFA

o Implication: NFAs are at least as expressive as REs

40/ 81

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Expressive Power of RE Vs FSA

@ We just saw that every RE can be converted into an equivalent NFA

o Implication: NFAs are at least as expressive as REs

@ It can also be shown that every NFA can be converted into an equivalent RE

o Implication: REs are at least as expressive as NFAs

S

41/81

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Expressive Power of RE Vs FSA

@ We just saw that every RE can be converted into an equivalent NFA

o Implication: NFAs are at least as expressive as REs

@ It can also be shown that every NFA can be converted into an equivalent RE

o Implication: REs are at least as expressive as NFAs

e Implication: REs and NFAs have the same expressive power
S

42/81

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Expressive Power of RE Vs FSA

@ We just saw that every RE can be converted into an equivalent NFA

o Implication: NFAs are at least as expressive as REs

@ It can also be shown that every NFA can be converted into an equivalent RE

o Implication: REs are at least as expressive as NFAs
e Implication: REs and NFAs have the same expressive power

@ Where do DFAs stand?
o Every DFA is an NFA

o We will show that every NFA can be converted into an equivalent DFA

43/81

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Expressive Power of RE Vs FSA

@ We just saw that every RE can be converted into an equivalent NFA

o Implication: NFAs are at least as expressive as REs

@ It can also be shown that every NFA can be converted into an equivalent RE

o Implication: REs are at least as expressive as NFAs
e Implication: REs and NFAs have the same expressive power

@ Where do DFAs stand?
o Every DFA is an NFA

o We will show that every NFA can be converted into an equivalent DFA

o Implication: RE, NFA and DFA are equivalent

44/ 81

R

Is abab € L((a | b)*a(a | b))?

45/81

R

R

R

R

R

R

R

R

R

R

R

R

Is abab € £((a | b)*a(a | b))?

Input: a b a b
Path 1: 1

46/ 81

R

R

Is abab € £((a | b)*a(a | b))?

47/81

R

R

R

R

Is abab € £((a | b)*a(a | b))?

Input: a b a b
Path 1: 1 1 1

48/81

R

R

R

Is abab € £((a | b)*a(a | b))?

Input: a b a b
Path 1: 1 1 1 1

49/81

R

R

Is abab € £((a | b)*a(a | b))?

b
Input: a b a b
Path 1: 1 1 1 1 1

50/81

R

R

Is abab € £((a | b)*a(a | b))?

b
Input: a b a
Path 1: 1 1 1 1
Path 2: 1 1 1
-

51/81

R

Is abab € £((a | b)*a(a | b))?

() :
&9 3
b b
Input: a b a
Path 1: 1 1 1 1
Path 2: 1 1 1 2

52/81

R

R

Is abab € £((a | b)*a(a | b))?

b
Input: a b a b
Path 1: 1 1 1 1 1

Path2: 1 1 1 2 3.

Accept

53/81

R

R

Is abab € L((a | b)*a(a | b))?

2 N

() - 2

oo o 2

b b

N <~ R

Input: a b a b

—
Path 1 1 1 1 1 1
Path 2 1 1 1 2 3 Accept

54/81

R

R

R

R

R

R

R

R

R

Is abab € £((a | b)*a(a | b))?

Input:

Path 1:
Path 2:
Path 3:

1
1
1

Accept

N = =
o
—
= w = T

All Paths {1} {1,2} {1,3} {1,2} {1,3} Accept

T =

55/81

R

R

R

R

R

R

R

R

R

R

R

Is aaab € L((a | b)*a(a | b))?

Input:

Path 1: 1
Path 2: 1
Path 3: 1
Path 4: 1

Path 5: e
All Paths| {1} {1}

56/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Is aabb € £((a | b)*a(a | b))?

Input:

Path 1:
Path 2:
Path 3:

a a b
1 1 1 1
1 2 3 1
1 3 1 1

All Paths

o {n2y {n23p {1,3p {1}

REJECT

57/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Converting NFA to DFA (contd.)

Syl el ion
Given a set S of NFA states,
—————e .

e compute S, = e-closure(S): S, is the set of all NFA states reachable by zero or more

om0 -
e-transitions from S.

° compute@= goto(S, a):|
o S'is the set of all NFA states reachable from S by taking a transition labeled «.

59/81

R

R

R

R

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Converting NFA to DFA (contd).

Each state in DFA corresponds to a set of states in NFA.
Start state of DFA = e-closure(start state of NFA).

From a state s in DFA that corresponds to a set of states S in NFA:

add a transition labeled « to state s’ that corresponds to a non-empty §'
in NFA,

such that §' = goto(S,).
s is a state in DFA such that the corresponding set of states S in NFA contains a final
state of NFA,

<« sis afinal state of DFA

—_— T

60/81

R

R

a
a o@per
.

e-closure({1}) = ill
goto({1},2) = (1.2}
goto({1hp) = {1}
goto({1,2},a) = {1,2,3}
goto({1,2},b) = {1,3}

- {1,2,3}

goto({1,2,3},a)

61/81

R

R

R

e-closure({1}) = {1}
goto({1}, a) = {1,2}
goto({1},b) = {1}
goto({1,2},a) = {1,2,3}
goto({1,2},b) = {13}
goto({1,2,3},a) = {1,2,3}
goto({1,2,3},b) = {1}
goto({1,3},a) = {1,2}
goto({1,3},b) = {1}

62/81

goto({1}, a) = {1,2}
goto({1},b) = {1}
goto({1,2},a) = {1,2,3}
goto({1,2},b) = {1,3}
= {1,2,3}

goto({1,2,3},a) =

63/81

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Converting RE to FSA

NFA: Compile RE to NFA (Thompson’s construction [1968]), then match.
St e
DFA: Compile to DFA, then match

((/X—)‘Convert NFA to DFA (Rabin-Scott construction), minimize

(B) Direct construction: RE derivatives [Brzozowski 1964].

@ More convenient and a bit more general than (A).

(C) Direct construction of [McNaughton Yamada 1960] <

@ Can be seen as a (more easily implemented) specialization of (B).

@ Used in Lex and its derivatives, i.e., most compilers use this algorithm.

64/81

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Converting RE to FSA

o NFA approach takes O(n) NFA construction plus OQ’@ matching, so has worst
case O(nm) complexity.
e DFA approach takes O construction plus O(m)match, so has worst case
O(2" + m) complexity. -
@ So, why bother with DFA?
o In many practical applications, the pattern is fixed and small, while the subject text is very
large. So, the O(mn) term is dominant over O(2")

e For many important cases, DFAs are of polynomial size

e In many applications, exponential blow-ups don’t occur, e.g., compilers.

65/81

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Derivative of Regular Expressions

B —
The derivative of a regular expressio.r.t. a symbol@ denoted 0,[R] is another
regular expression R’ such that £(R) = L(xR) : -

—

Basically, 0,[R] captures the suffixes of those strings that match R and start with x.
Examples

 Oifa(bic)] = ble =15

o Ouf(ab)cd] = d e = {e§

o O,(alb)* cd] = g@jcg &
o I [(alb)x cd] = d
» it 40

66/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Definition of RE Derivative (1)

inclEps(R): A predicate that returns tru HC/EEJER/\

inclEps(a) = false, Yac¥X ()= {3 # e
inclEps(Ri|R,) = inclEps(R1) V inclEps(Ry) L (R | Re)
m = lnclEps(R1) A inclEps(R,) — U r

mclEps(R*) = true 2 (K ") = {ej O

Note inclEps can be computed in linear-time.

67/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Note:

L(€) = {}

~ T

oreETF

8g[f] = ¢ Qa@b{ Q’Q) I

ot = 0 D ()]l
Ga[Ri|R)] = Ou[Ri]lOuR)] = L | <

Oa[Rx] = OuR]R * - - RR*
Oo[RiR;] = aa[R1]R2@a[R2] ‘ifinclEps(R1) - :e\ﬁq

= Og[Ri]R, otherwise

o B G LR SRS

68/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

DFA Using Derivatives: Illustration

&

Consider Ry = (alb *%{ alb) 4
Oa[Ri] = Ri|(alb) = R,
B[R] = R, -
OR] = Rl(alb)le = Ry
8b[Rz = ﬂ@ =R,
o[Rs] = Ril(alb)le = R;
Ob[Rs] = Rile = Ry
Oa[Rs] = Ri|(alb) = R,
5[R] = R,

69/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

McNaughton-Yamada Construction

Can be viewed as a simpler way to represent derivatives
@ Positions in RE are numbered, e.g., °(¢@|b2)* a*(a*|b)$°.

o A derivative is identified by its beginning position in the RE

o Or more generally, a derivative is identified by a set of positions

e Each DFA state corresponds to a position set (pset)

R, = {1,2,3}
R, = {1,2,3,4,5}
R, = {1,2,3,4,5,6}

—

R, = {1,2,3,6}

70/81

R

R

R

R

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

McNaughton-Yamada: Definitions

first(P): Yields the set of first symbols of RE denoted by pset P
Determines the transitions out of DFA state for P
Example: For the RE (a'|b?)* a@*(a*|b°)$¢, first({1,2,3}) = {a, b}
P|s: Subset of P that contain s, i.e., {p € P | R contains s at p}
Example: {1,2,3}|, = {1,3},{1,2,4,5}|, = {2,5}
follow(P): set of positions immediately after P, i.e., |, follow({p}))
Definition is very similar to derivatives
Example: follow({3,4}) = {4,5,6}
follow({1}) = {1,2,3}

71/81

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

McNaughton-Yamada Construction (2)

BuildMY (R, pset)
Create an automaton state S labeled pset
Mark this state as final if $ occurs in R at pset
foreach symbol x € first(pset) — {$} do
Call BuildMY (R, follow(pset|,)) if hasn’t previously been called

Create a transition on x from S to

the root of this subautomaton

DFA construction begins with the call BuildMY (R, follow({0})). The root of the
resulting automaton is marked as a start state.

72/81

Lexical Analysis

Intro Regular Expressions Lex FSA RE to FSA

BuildMY lllustration on R = °(a'|b?)* a’(a*|b>)$°

Computations Needed

follow({0}) = {1,2,3}

follow({1}) = follow({2}) = {1, 2,3}
follow({3}) = {4,5}

Sollow({4}) = follow({5}) = {6}

{1a23 3}|ﬂ = {173}3 {172’3}|b = {2}
follow({1,3}) = {1,2,3,4,5}

{1,2,3,4,5}|, = {1,3,4}
{1,2,3,4,5}], = {2,5}
follow({1,3,4}) ={1,2,3,4,5,6}
follow({2,5}) = {1,2,3,6}

Resulting Automaton

{1,2,3,4,5,6}|, = {1,3,4}
{1,2,3,4,5,6}] = {2,5}

{1,2,3,6}], = {1,3} {1,2,3,6}|, = {2}

H State ‘ Pset H
- 1 {1,2,3}
2 {1,2,3,4,5}
3 {1,2,3,4,5,6}
4 {1,2,3,6}

/81

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

McNaughton-Yamada (MY) Vs Derivatives

@ Conceptually very similar
@ MY takes a bit longer to describe, and its correctness a bit harder to follow.
@ MY is also more mechanical, and hence is found in most implementations

@ Derivatives approach is more general

e Can support some extensions to REs, e.g., complement operator
e Can avoid some redundant states during construction
o Example: For ac|bc, DFA built by derivative approach has 3 states, but the one built by MY

construction has 4 states
The derivative approach merges the two c’s in the RE, but with MY, the two c’s have different

positions, and hence operations on them are not shared.

74/81

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Avoiding Redundant States

@ Automata built by MY is not optimal

Al s
e Automata minimization algorithms can be used to produce an optimal automaton.

o Derivatives approach associates DFA states with derivatives, but does not say how

to determine equality among derivatives.

@ There is a spectrum of techniques to determine RE equality

o MY is the simplest: relies on syntactic identity

o At the other end of the spectrum, we could use a complete decision procedure for RE
equality.
@ In this case, the derivative approach yields the optimal RE!

o In practice we would tend to use something in the middle

o Trade off some power for ease/efficiency of implementation

75/81

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

RE to DFA conversion: Complexity

e Given DFA size can be exponential in the worst case, we obviously must accept

worst-case exponential complexity.

o For the derivatives approach, it is not immediately obvious that it even terminates!

o More obvious for McNaughton-Yamada approach, since DFA states correspond to
position sets, of which there are onlyle

@ Derivative computation is linear in RE size in the general case.

@ So, overall complexity is O(n2")

e Complexity can be improved, but the worst-case 2" takes away some of the
rationale for doing so.
o Instead, we focus on improving performance in many frequently occurring special cases
where better complexity is achievable. 76/81

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Using States in Lex

@ Some regular languages are more easily expressed as FSA O kal = 2(5w 1)
o Set of all strings representing binary numbers divisible by 3 7 |
—Lln+ 3
@ Lex allows you to use FSA concepts using start states —

%X | MOD1 MOD2

non { }] ‘20 rizig“-y

— S ~ +2
["1" {BEGIN MOD1} °(@ ‘i@ —

S ~—r

<MOD1> "O" {BEGIN MOD2} J 10| & 2441

<MOD1> "1" {BEGIN 0} || oo & 2k

—_— — & I

2 k)

77/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

@ ECHO causes Lex to echo current lexeme

@ REJECT causes abandonment of current match in favor of the next.

e Example
al|
ab |
abc |
abcd {ECHO; REJECT;}
./\n {/* eat up the character */}

78/81

transition : state X ¥ — state

algorithm scanner() {
current_state = start state,
while (1) {
c = getc(); /* on end of file, ... */
if|defined(transition(current state,) |

\ current_state = transition(current_state, c);
e R

else

return s;

79/81

R

R

R

R

R

R

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Implementing a Scanner (contd.)

Implementing the transition function:

e Simplest: 2-D array.
Space inefficient.

e Traditionally compressed using row/colum equivalence. (default on (£) lex)
Good space-time tradeoff.

@ Further table compression using various techniques:

e Example: RDM (Row Displacement Method):

Store rows in overlapping manner using 2 1-D arrays.

Smaller tables, but longer access times.

80/81

Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Lexical Analysis: A Summary

Convert a stream of characters into a stream of tokens.

@ Make rest of compiler independent of character set

@ Strip off comments

Recognize line numbers

Ignore white space characters
@ Process macros (definitions and uses)

o Interface with symbol (name) table.

81/81

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

	Lexical Analysis
	Intro
	Regular Expressions
	Lex
	FSA
	RE to FSA

