
Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Phases of Syntax Analysis

1. Identify the words: Lexical Analysis.

Converts a stream of characters (input program) into a stream of tokens.

Also called Scanning or Tokenizing.

2. Identify the sentences: Parsing.

Derive the structure of sentences: construct parse trees from a stream of tokens.
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Lexical Analysis

Convert a stream of characters into a stream of tokens.

• Simplicity: Conventions about “words” are o�en di�erent from conventions about

“sentences”.

• E�iciency: Word identification problem has a much more e�icient solution than

sentence identification problem.

• Portability: Character set, special characters, device features.
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Terminology

• Token: Name given to a family of words. e.g., integer_constant

• Lexeme: Actual sequence of characters representing a word. e.g., 32894

• Pa�ern: Notation used to identify the set of lexemes represented by a token. e.g.,

[0− 9]+
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Terminology

A few more examples:

Token Sample Lexemes Pa�ern

while while while

integer_constant 32894,−1093, 0 (−|ε)[0− 9]+

identifier buffer_size [_a− zA− Z ]+
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Pa�erns

How do we compactly represent the set of all lexemes corresponding to a token?

For instance:

The token integer_constant represents the set of all integers: that is, all sequences of digits

(0–9), preceded by an optional sign (+ or −).

Obviously, we cannot simply enumerate all lexemes.

Use Regular Expressions.
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Regular Expressions over alphabet

∑
Let R be the set of all regular expressions over Σ. Then,

• Empty String: ε ∈ R

• Unit Strings: α ∈ Σ⇒ α ∈ R

• Concatenation: r1, r2 ∈ R⇒ r1r2 ∈ R

• Alternative: r1, r2 ∈ R⇒ (r1 | r2) ∈ R

• Kleene Closure: r ∈ R⇒ r∗ ∈ R
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Semantics of Regular Expressions

Semantic Function L : Maps regular expressions to sets of strings.

L(ε) = {ε}
L(α) = {α} (α ∈ Σ)

L(r1 | r2) = L(r1) ∪ L(r2)

L(r1 r2) = L(r1) · L(r2)

L(r∗) = {ε} ∪ (L(r) · L(r∗))
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Computing the Semantics

L(a) = {a}

L(a | b) = L(a) ∪ L(b)

= {a} ∪ {b}

= {a,b}

L(ab) = L(a) · L(b)

= {a} · {b}

= {ab}

L((a | b)(a | b)) = L(a | b) · L(a | b)

= {a,b} · {a,b}

= {aa,ab,ba,bb}
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Computing the Semantics
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Computing the Semantics of Closure

L(r∗) = {ε} ∪ (L(r) · L(r∗))
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Computing the Semantics of Closure

Example: L((a | b)∗)

= {ε} ∪ (L(a | b) · L((a | b)∗))

L0 = {ε} Base case

L1 = {ε} ∪ ({a,b} · L0)

= {ε} ∪ ({a,b} · {ε})

= {ε,a,b}

L2 = {ε} ∪ ({a,b} · L1)

= {ε} ∪ ({a,b} · {ε,a,b})

= {ε,a,b,aa,ab,ba,bb}
.
.
.

L((a | b)∗) = L∞ = {ε,a,b,aa,ab,ba,bb, . . .}
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Another Example: L((a∗b∗)∗)

L(a∗) = {ε,a,aa, . . .}

L(b∗) = {ε,b,bb, . . .}

L(a∗b∗) = {ε,a,b,aa,ab,bb,aaa,aab,abb,bbb, . . .}

L((a∗b∗)∗) = {ε}

∪ {ε,a,b,aa,ab,bb,aaa,aab,abb,bbb, . . .}

∪ {ε,a,b,aa,ab,ba,bb,aaa,aab,aba,abb,baa,bab,bba,bbb, . . .}
.
.
.

= {ε,a,b,aa,ab,ba,bb, . . .}
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Regular Definitions

Assign “names” to regular expressions.

For example,

digit −→ 0 | 1 | · · · | 9
natural −→ digit digit

∗

Shorthands:

• a+: Set of strings with one or more occurrences of a.

• a?: Set of strings with zero or one occurrences of a.

Example:

integer −→ (+|−)?digit
+
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Regular Definitions: Examples

float −→ integer . fraction

integer −→ (+|−)? no_leading_zero

no_leading_zero −→ (nonzero_digit digit
∗) | 0

fraction −→ no_trailing_zero exponent
?

no_trailing_zero −→ (digit
∗

nonzero_digit) | 0
exponent −→ (E | e) integer

digit −→ 0 | 1 | · · · | 9
nonzero_digit −→ 1 | 2 | · · · | 9
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Regular Definitions and Lexical Analysis

Regular Expressions and Definitions specify sets of strings over an input alphabet.

They can hence be used to specify the set of lexemes associated with a token.

. Used as the pa�ern language

How do we decide whether an input string belongs to the set of strings specified by a

regular expression?
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Lexical Analysis

Regular Expressions and Definitions are used to specify the set of strings (lexemes)

corresponding to a token.

An automaton (DFA/NFA) is built from the above specifications.

Each final state is associated with an action: emit the corresponding token.
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Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits

separated by a decimal point).

[0-9]+ { emit(INTEGER_CONSTANT); }

[0-9]+"."[0-9]+ { emit(FLOAT_CONSTANT); }

0-9

0-9

0-9

0-9

ε

0-9

0-9

ε "."

INTEGER_CONSTANT

FLOAT_CONSTANT
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Lex

Tool for building lexical analyzers.

Input: lexical specifications (.l file)

Output: C function (yylex) that returns a token on each invocation.

%%

[0-9]+ { return(INTEGER_CONSTANT); }

[0-9]+"."[0-9]+ { return(FLOAT_CONSTANT); }

Tokens are simply integers (#define’s).
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Lex Specifications

%{

C/C++ header statements for inclusion

%}

Regular Definitions e.g.:

digit [0-9]

%%

Token Specifications e.g.:

{digit}+ { return(INTEGER_CONSTANT); }

%%

Support functions in C

20 / 81

R

R

R

R

R

R

R

R

R



Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Regular Expressions in Lex

Adds “syntactic sugar” to regular expressions:

• Range: [0-7]: Integers from 0 through 7 (inclusive)

[a-nx-zA-Q]: Le�ers a thru n, x thru z and A thru Q.

• Exception: [^/]: Any character other than /.

• Definition: {digit}: Use the previously specified regular definition digit.

• Special characters: Connectives of regular expression, convenience features.

e.g.: | * ^
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Special Characters in Lex

| * + ? ( ) Same as in regular expressions

[ ] Enclose ranges and exceptions

{ } Enclose “names” of regular definitions

^ Used to negate a specified range (in Exception)

. Match any single character except newline

\ Escape the next character

\n, \t Newline and Tab

For literal matching, enclose special characters in double quotes (") e.g.: "*"

Or use \ to escape. e.g.: \"
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Examples

for Sequence of f, o, r

"||" C-style OR operator (two vert. bars)

.* Sequence of non-newline characters

[^*/]+ Sequence of characters except * and /

\"[^"]*\" Sequence of non-quote characters

beginning and ending with a quote

({letter}|"_")({letter}|{digit}|"_")*

C-style identifiers
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A Complete Example

%{

#include <stdio.h>

#include "tokens.h"

%}

digit [0-9]

hexdigit [0-9a-f]

%%

"+" { return(PLUS); }

"-" { return(MINUS); }

{digit}+ { return(INTEGER_CONSTANT); }

{digit}+"."{digit}+ { return(FLOAT_CONSTANT); }

. { return(SYNTAX_ERROR); }

%%
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Actions

Actions are a�ached to final states.

Distinguish the di�erent final states.

Used to return tokens.

Can be used to set a�ribute values.

Fragment of C code (blocks enclosed by ‘{’ and ‘}’).
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A�ributes

Additional information about a token’s lexeme.

Stored in variable yylval

Type of a�ributes (usually a union) specified by YYSTYPE

Additional variables:

yytext: Lexeme (Actual text string)

yyleng: length of string in yytext
. yylineno: Current line number (number of ‘\n’ seen thus far)

enabled by %option yylineno
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Priority of matching

What if an input string matches more than one pa�ern?

"if" { return(TOKEN_IF); }

{letter}+ { return(TOKEN_ID); }

"while" { return(TOKEN_WHILE); }

A pa�ern that matches the longest string is chosen.

Example: ifs is matched with an identifier, not the keyword if.

Of pa�erns that match strings of same length, the first (from the top of file) is

chosen.

while is matched as an identifier, not the keyword while.

Given if1, a match will be announced for the keyword if, with 1 being considered as

part of the next token.
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Constructing Scanners using (f)lex

Scanner specifications: specifications.l

(f)lex

specifications.l −−−−→ lex.yy.c

Generated scanner in lex.yy.c

(g)cc

lex.yy.c −−−−→ executable
yywrap(): hook for signalling end of file.

Use -lfl (flex) or -ll (lex) flags at link time to include default function yywrap() that

always returns 1.
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Recognizers

Construct automata that recognize strings belonging to a language.

Finite State Automata⇒ Regular Languages

. Finite State→ cannot maintain arbitrary counts.

Push Down Automata⇒ Context-free Languages

. Stack is used to maintain counter, but only one counter can go arbitrarily high.
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Finite State Automata

Represented by a labeled directed graph.

A finite set of states (vertices).

Transitions between states (edges).

Labels on transitions are drawn from Σ ∪ {ε}.

One distinguished start state.

One or more distinguished final states.
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Finite State Automata: An Example

Consider the Regular Expression (a | b)∗a(a | b).

L((a | b)∗a(a | b)) = {aa,ab,aaa,aab,baa,bab,
aaaa,aaab,abaa,abab,baaa, . . .}.

The following automaton determines whether an input string belongs to

L((a | b)∗a(a | b):

a

a

b
b

a

1 2 3
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Finite State Automata: An Example

Consider the Regular Expression (a | b)∗a(a | b).

L((a | b)∗a(a | b)) = {aa,ab,aaa,aab,baa,bab,
aaaa,aaab,abaa,abab,baaa, . . .}.

The following automaton determines whether an input string belongs to

L((a | b)∗a(a | b):

a

a

b
b

a

1 2 3
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Deterministic Vs Nondeterministic FSA

(a | b)∗a(a | b):

Nondeterministic:

(NFA)

a

a

b
b

a

1 2 3

Deterministic:

(DFA)

a

a

b

b

a

a

b

b

1 2

3

4
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Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

. . . if beginning from the start state

. . . we can trace some path through the automaton

. . . such that the sequence of edge labels spells x

. . . and end in a final state.

Or, there exists a path in the graph from the start state to a final state such that the

sequence of labels on the path spells out x

34 / 81

R

R



Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

NFA may have transitions labeled by ε.

(Spontaneous transitions)

All transition labels in a DFA belong to Σ.

For some string x , there may be many accepting paths in an NFA.

For all strings x , there is one unique accepting path in a DFA.

Usually, an input string can be recognized faster with a DFA.

NFAs are typically smaller than the corresponding DFAs.

35 / 81

R



Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

NFA vs. DFA

R = Size of Regular Expression

N = Length of Input String

NFA DFA
Size of

Automaton

O(R) O(2
R)

Recognition time

per input string

O(N × R) O(N)
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Regular Expressions to NFA

Thompson’s Construction: For every regular expression r , derive an NFA N(r) with

unique start and final states.

ε
ε

α ∈ Σ
α

(r1 | r2)

N(r )
1

ε

ε

ε

ε

N(r )
2
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Regular Expressions to NFA (contd.)

r1r2 N(r )
2

N(r )
1

ε ε

r∗
ε ε

N(r)

ε

ε
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Example

(a | b)∗a(a | b):

ε

ε ε

ε

a

b

ε ε a
ε

ε ε

ε

a

b

ε

ε
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Expressive Power of RE Vs FSA

We just saw that every RE can be converted into an equivalent NFA

Implication: NFAs are at least as expressive as REs

It can also be shown that every NFA can be converted into an equivalent RE

Implication: REs are at least as expressive as NFAs

Implication: REs and NFAs have the same expressive power

Where do DFAs stand?

Every DFA is an NFA

We will show that every NFA can be converted into an equivalent DFA

Implication: RE, NFA and DFA are equivalent
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Recognition with a DFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b

b

a

a

b

b

1 2

3

4

Input: a b a b

Path: 1 2 4 2 4 Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1

1 1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1

1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1

1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1

1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1

2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1 2

3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA (contd.)

Is aaab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a a a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1 1 2

Path 3: 1 1 1 2 3 Accept

Path 4: 1 1 2 3 ⊥
Path 5: 1 2 3 ⊥ ⊥
All Paths {1} {1, 2} {1, 2, 3} {1, 2, 3} {1, 2, 3} Accept
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Recognition with an NFA (contd.)

Is aabb ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a a a b

Path 1: 1 1 1 1 1

Path 2: 1 1 2 3 ⊥
Path 3: 1 2 3 ⊥ ⊥
All Paths {1} {1, 2} {1, 2, 3} {1, 3} {1} REJECT
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Converting NFA to DFA

a

a

b
b

a

1 2 3
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Converting NFA to DFA (contd.)

Subset construction

Given a set S of NFA states,

compute Sε = ε-closure(S): Sε is the set of all NFA states reachable by zero or more

ε-transitions from S.

compute Sα = goto(S, α):

S′ is the set of all NFA states reachable from S by taking a transition labeled α.

Sα = ε-closure(S′).
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Converting NFA to DFA (contd).

Each state in DFA corresponds to a set of states in NFA.

Start state of DFA = ε-closure(start state of NFA).

From a state s in DFA that corresponds to a set of states S in NFA:

add a transition labeled α to state s′ that corresponds to a non-empty S′

in NFA,

such that S′ = goto(S, α).

s is a state in DFA such that the corresponding set of states S in NFA contains a final

state of NFA,

⇐ s is a final state of DFA
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NFA→ DFA: An Example

a

a

b
b

a

1 2 3

ε-closure({1}) = {1}
goto({1},a) = {1, 2}
goto({1},b) = {1}
goto({1, 2},a) = {1, 2, 3}
goto({1, 2},b) = {1, 3}
goto({1, 2, 3},a) = {1, 2, 3}
.
.
.
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NFA→ DFA: An Example (contd.)

ε-closure({1}) = {1}
goto({1},a) = {1, 2}
goto({1},b) = {1}
goto({1, 2},a) = {1, 2, 3}
goto({1, 2},b) = {1, 3}
goto({1, 2, 3},a) = {1, 2, 3}
goto({1, 2, 3},b) = {1}
goto({1, 3},a) = {1, 2}
goto({1, 3},b) = {1}
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NFA→ DFA: An Example (contd.)

goto({1},a) = {1, 2}
goto({1},b) = {1}
goto({1, 2},a) = {1, 2, 3}
goto({1, 2},b) = {1, 3}
goto({1, 2, 3},a) = {1, 2, 3}
.
.
.

a

a

b

b

a

a

b

b

{1} {1,2}

{1,3}

{1,2,3}
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Converting RE to FSA

NFA: Compile RE to NFA (Thompson’s construction [1968]), then match.

DFA: Compile to DFA, then match

(A) Convert NFA to DFA (Rabin-Sco� construction), minimize

(B) Direct construction: RE derivatives [Brzozowski 1964].

More convenient and a bit more general than (A).

(C) Direct construction of [McNaughton Yamada 1960]

Can be seen as a (more easily implemented) specialization of (B).

Used in Lex and its derivatives, i.e., most compilers use this algorithm.
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Converting RE to FSA

NFA approach takes O(n) NFA construction plus O(nm) matching, so has worst

case O(nm) complexity.

DFA approach takes O(2
n) construction plus O(m)match, so has worst case

O(2
n + m) complexity.

So, why bother with DFA?

In many practical applications, the pa�ern is fixed and small, while the subject text is very

large. So, the O(mn) term is dominant over O(2
n)

For many important cases, DFAs are of polynomial size

In many applications, exponential blow-ups don’t occur, e.g., compilers.
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Derivative of Regular Expressions

The derivative of a regular expression R w.r.t. a symbol x , denoted ∂x [R] is another

regular expression R′ such that L(R) = L(xR′)

Basically, ∂x [R] captures the su�ixes of those strings that match R and start with x .

Examples

∂a[a(b|c)] = b|c

∂a[(a|b)cd] = cd

∂a[(a|b)∗ cd] = (a|b)∗ cd

∂c[(a|b)∗ cd] = d

∂d [(a|b)∗ cd] = ∅
66 / 81
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Definition of RE Derivative (1)

inclEps(R): A predicate that returns true if ε ∈ L(R)

inclEps(a) = false, ∀a ∈ Σ

inclEps(R1|R2) = inclEps(R1) ∨ inclEps(R2)

inclEps(R1R2) = inclEps(R1) ∧ inclEps(R2)

inclEps(R∗) = true

Note inclEps can be computed in linear-time.
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Definition of RE Derivative (2)

∂a[a] = ε

∂a[b] = ∅
∂a[R1|R2] = ∂a[R1]|∂a[R2]

∂a[R∗] = ∂a[R]R ∗
∂a[R1R2] = ∂a[R1]R2|∂a[R2] if inclEps(R1)

= ∂a[R1]R2 otherwise

Note: L(ε) = {ε} 6= L(∅) = {}
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DFA Using Derivatives: Illustration

Consider R1 = (a|b)∗ a(a|b)

∂a[R1] = R1|(a|b) = R2

∂b[R1] = R1

∂a[R2] = R1|(a|b)|ε = R3

∂b[R2] = R1|ε = R4

∂a[R3] = R1|(a|b)|ε = R3

∂b[R3] = R1|ε = R4

∂a[R4] = R1|(a|b) = R2

∂b[R4] = R1

a

a

b

b

a

a

b

b

1 2

3

4
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McNaughton-Yamada Construction

Can be viewed as a simpler way to represent derivatives

Positions in RE are numbered, e.g.,
0(a1|b2)∗ a3(a4|b5)$6

.

A derivative is identified by its beginning position in the RE

Or more generally, a derivative is identified by a set of positions

Each DFA state corresponds to a position set (pset)

R1 ≡ {1, 2, 3}
R2 ≡ {1, 2, 3, 4, 5}
R3 ≡ {1, 2, 3, 4, 5, 6}
R4 ≡ {1, 2, 3, 6}

a

a

b

b

a

a

b

b

1 2

3

4
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McNaughton-Yamada: Definitions

first(P): Yields the set of first symbols of RE denoted by pset P

Determines the transitions out of DFA state for P

Example: For the RE (a1|b2)∗ a3(a4|b5)$6
, first({1, 2, 3}) = {a, b}

P|s: Subset of P that contain s, i.e., {p ∈ P | R contains s at p}
Example: {1, 2, 3}|a = {1, 3}, {1, 2, 4, 5}|b = {2, 5}

follow(P): set of positions immediately a�er P , i.e.,

⋃
p∈P follow({p}))

Definition is very similar to derivatives

Example: follow({3, 4}) = {4, 5, 6}
follow({1}) = {1, 2, 3}
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McNaughton-Yamada Construction (2)

BuildMY(R, pset)

Create an automaton state S labeled pset

Mark this state as final if $ occurs in R at pset

foreach symbol x ∈ first(pset)− {$} do
Call BuildMY(R, follow(pset|x)) if hasn’t previously been called

Create a transition on x from S to

the root of this subautomaton

DFA construction begins with the call BuildMY(R, follow({0})). The root of the

resulting automaton is marked as a start state.
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BuildMY Illustration on R = 0(a1|b2)∗ a3(a4|b5)$6

Computations Needed

follow({0}) = {1, 2, 3}
follow({1}) = follow({2}) = {1, 2, 3}
follow({3}) = {4, 5}
follow({4}) = follow({5}) = {6}

{1, 2, 3}|a = {1, 3}, {1, 2, 3}|b = {2}
follow({1, 3}) = {1, 2, 3, 4, 5}

{1, 2, 3, 4, 5}|a = {1, 3, 4}
{1, 2, 3, 4, 5}|b = {2, 5}
follow({1, 3, 4}) = {1, 2, 3, 4, 5, 6}
follow({2, 5}) = {1, 2, 3, 6}

{1, 2, 3, 4, 5, 6}|a = {1, 3, 4}
{1, 2, 3, 4, 5, 6}|b = {2, 5}
{1, 2, 3, 6}|a = {1, 3} {1, 2, 3, 6}|b = {2}

Resulting Automaton

a

a

b

b

a

a

b

b

1 2

3

4

State Pset

1 {1,2,3}

2 {1,2,3,4,5}

3 {1,2,3,4,5,6}

4 {1,2,3,6}
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McNaughton-Yamada (MY) Vs Derivatives

Conceptually very similar

MY takes a bit longer to describe, and its correctness a bit harder to follow.

MY is also more mechanical, and hence is found in most implementations

Derivatives approach is more general

Can support some extensions to REs, e.g., complement operator

Can avoid some redundant states during construction

Example: For ac|bc, DFA built by derivative approach has 3 states, but the one built by MY

construction has 4 states

The derivative approach merges the two c’s in the RE, but with MY, the two c’s have di�erent

positions, and hence operations on them are not shared.
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Avoiding Redundant States

Automata built by MY is not optimal

Automata minimization algorithms can be used to produce an optimal automaton.

Derivatives approach associates DFA states with derivatives, but does not say how

to determine equality among derivatives.

There is a spectrum of techniques to determine RE equality

MY is the simplest: relies on syntactic identity

At the other end of the spectrum, we could use a complete decision procedure for RE

equality.

In this case, the derivative approach yields the optimal RE!

In practice we would tend to use something in the middle

Trade o� some power for ease/e�iciency of implementation
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RE to DFA conversion: Complexity

Given DFA size can be exponential in the worst case, we obviously must accept

worst-case exponential complexity.

For the derivatives approach, it is not immediately obvious that it even terminates!

More obvious for McNaughton-Yamada approach, since DFA states correspond to

position sets, of which there are only 2
n
.

Derivative computation is linear in RE size in the general case.

So, overall complexity is O(n2
n)

Complexity can be improved, but the worst-case 2
n

takes away some of the

rationale for doing so.

Instead, we focus on improving performance in many frequently occurring special cases

where be�er complexity is achievable. 76 / 81
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Using States in Lex

Some regular languages are more easily expressed as FSA

Set of all strings representing binary numbers divisible by 3

Lex allows you to use FSA concepts using start states

%x MOD1 MOD2

"0" { }

"1" {BEGIN MOD1}

<MOD1> "0" {BEGIN MOD2}

<MOD1> "1" {BEGIN 0}
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Other Special Directives

ECHO causes Lex to echo current lexeme

REJECT causes abandonment of current match in favor of the next.

Example

a|

ab|

abc|

abcd {ECHO; REJECT;}

.|\n {/* eat up the character */}
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Implementing a Scanner

transition : state × Σ→ state

algorithm scanner() {

current_state = start state;

while (1) {

c = getc(); /* on end of file, ... */

if defined(transition(current_state, c))

current_state = transition(current_state, c);

else

return s;

}

}
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Implementing a Scanner (contd.)

Implementing the transition function:

Simplest: 2-D array.

Space ine�icient.

Traditionally compressed using row/colum equivalence. (default on (f)lex)

Good space-time tradeo�.

Further table compression using various techniques:

Example: RDM (Row Displacement Method):

Store rows in overlapping manner using 2 1-D arrays.

Smaller tables, but longer access times.
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Lexical Analysis: A Summary

Convert a stream of characters into a stream of tokens.

Make rest of compiler independent of character set

Strip o� comments

Recognize line numbers

Ignore white space characters

Process macros (definitions and uses)

Interface with symbol (name) table.
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