Phases of Syntax Analysis

1. Identify the words: Lexical Analysis.

Converts a stream of characters (input program) into a stream of tokens.
Also called Scanning or Tokenizing.
2. Identify the sentences: Parsing.

Derive the structure of sentences: construct parse trees from a stream of tokens.

Lexical Analysis

Convert a stream of characters into a stream of tokens.

- Simplicity: Conventions about "words" are often different from conventions about "sentences".
- Efficiency: Word identification problem has a much more efficient solution than sentence identification problem.
- Portability: Character set, special characters, device features.

Terminology

- Token: Name given to a family of words.

Lexeme: Actual sequence of characters representing a word. e.g., 32894

- Pattern: Notation used to identify the set of lexemes represented by a token. e.g., [0-9]+

Terminology

A few more examples:

Token	Sample Lexemes	Pattern
while	while	while
integer_constant	32894. -(1093, 0	$(-\mid \epsilon)[0-9]+)$
identifier	buffer_size	$[\ldots a-z A-Z]$

Patterns

How do we compactly represent the set of all lexemes corresponding to a token?
For instance:
The token integer_constant represents the set of all integers: that is, all sequences of digits (0-9), preceded by an optional sign (+ or -).

Obviously, we cannot simply enumerate all lexemes.

Use Regular Expressions.

Regular Expressions over alphabet

Let R be the set of all regular expressions over Σ. Then,

- Empty String: $\epsilon \in R$
- Unit Strings: $\alpha \in \Sigma \Rightarrow \alpha \in R$
- Concatenation: $r_{1}, r_{2} \in R \Rightarrow r r_{2} \in R$
- Alternative: $r_{1}, r_{2} \in R \Rightarrow\left(r_{1} \mid r_{2}\right) \in R$
- Kleene Closure: $r \in R \Rightarrow r^{*} \in R$

Semantics of Regular Expressions

Semantic Function \mathcal{L} : Maps regular expressions to sets of strings.

$$
\begin{aligned}
& \mathcal{L}(\epsilon)=\{\epsilon\} \\
& \mathcal{L}(\alpha)=\{\alpha\} \quad(\alpha \in \Sigma) \\
& \Gamma \overline{\mathcal{L}\left(r_{1} \mid r_{2}\right)}=\overline{\mathcal{L}\left(r_{1}\right)} \cup \overline{\mathcal{L}\left(r_{2}\right)} \text { set union } \\
& \mathcal{L}\left(r_{1} r_{2}\right)=\overline{\mathcal{L}\left(r_{1}\right)} \cdot \hat{\mathcal{L}\left(r_{2}\right)} \& \text { set product } \\
& \left.\widehat{\mathcal{L}\left(r^{*}\right)}=\overline{\{\epsilon\} \cup(\mathcal{L}(r)} \cdot \mathcal{L}\left(r^{*}\right)\right) \\
& \square \\
& \mathscr{L}(r) \cdot \mathscr{L}(r) \cdot \mathcal{L}(r)
\end{aligned}
$$

Computing the Semantics

$$
\begin{aligned}
\mathcal{L}(a) & =\{\mathrm{a}\} \\
\mathcal{L}(a \mid b) & =\underline{\mathcal{L}(a)} \cup \mathcal{L}(b) \\
& =\{\mathrm{a}\} \cup\{\mathrm{b}\} \\
& =\{\mathrm{a}, \mathrm{~b}\}
\end{aligned}
$$

Computing the Semantics

$$
\begin{aligned}
\mathcal{L}(a) & =\{\mathrm{a}\} \\
\mathcal{L}(a \mid b) & =\mathcal{L}(a) \cup \mathcal{L}(b) \\
& =\{\mathrm{a}\} \cup\{\mathrm{b}\} \\
& =\{\mathrm{a}, \mathrm{~b}\} \\
\mathcal{L}(a b) & =\mathcal{L}(a) \cdot \mathcal{L}(b) \\
& =\{\mathrm{a}\} \cdot\{\mathrm{b}\} \\
& =\{\mathrm{ab}\}
\end{aligned}
$$

Computing the Semantics

$$
\begin{aligned}
& \mathcal{L}(a)=\{\mathrm{a}\} \\
& \mathcal{L}(a \mid b)=\mathcal{L}(a) \cup \mathcal{L}(b) \\
&=\{\mathrm{a}\} \cup\{\mathrm{b}\} \\
&=\underline{\{\mathrm{a}, \mathrm{~b}\}} \\
& \mathcal{L}(a b)=\frac{\mathcal{L}(a) \cdot \mathcal{L}(b)}{} \\
&=\{\mathrm{a}\} \cdot\{\mathrm{b}\} \\
&=\{\mathrm{ab}\} \\
& \underline{\mathcal{L}((a \mid b)(a \mid b))}=\underline{\mathcal{L}(a \mid b) \cdot \underline{\mathcal{L}(a \mid b)}} \\
&=\underline{\{\mathrm{a}, \mathrm{~b}\}} \cdot \underline{\{\mathrm{a}, \mathrm{~b}\}} \\
&=\underline{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\}}
\end{aligned}
$$

Computing the Semantics of Closure

$$
\begin{aligned}
& \underline{\mathcal{L}\left(r^{*}\right)}=\{\epsilon\} \cup\left(\mathcal{L}(r)\left(\mathcal{L}\left(r^{*}\right)\right)\right. \\
& \mathcal{L}_{0}\left(r^{*}\right)=\mathcal{L}(\epsilon) \\
& \left.\mathcal{L}_{1}^{-}\left(r^{*}\right)=\mathcal{L}_{0} \text { ur } \mathcal{L}^{(}\right) \cdot \mathcal{L}_{0}\left(r^{*}\right) \\
& \mathcal{L}_{2}^{*}\left(r^{*}\right)=\mathcal{L}_{1}\left(r^{*}\right)\left(r^{*}\right) \not \mathcal{L}_{1}\left(r^{*}\right) \\
& \mathcal{L}_{3}\left(r^{*}\right)=\mathcal{L}_{2}\left({ }^{*}\right) \cup \mathcal{L}(r) \cdot \mathcal{L}_{2}\left(r^{* *}\right) \\
& \text { "each } \mathcal{L}_{i} \text { is a "closer } \\
& \text { approximation t } \mathcal{L}
\end{aligned}
$$

Computing the Semantics of Closure

Example: $\mathcal{L}\left((a \mid b)^{*}\right)$ 乙

$$
\begin{aligned}
&=\left\{\overline{\epsilon\} \cup(\mathcal{L}(a \mid b)} \cdot \mathcal{L}\left((a \mid b)^{*}\right)\right) \\
& \frac{L_{0}}{}=\{\epsilon\} \\
& \hline L_{1}=\{\epsilon\} \cup\left(\{\mathrm{a}, \mathrm{~b}\} \cdot L_{0}\right) \\
&=\{\epsilon\} \cup(\{\mathrm{a}, \mathrm{~b}\} \cdot\{\epsilon\}) \\
&=\{\epsilon, \mathrm{a}, \mathrm{~b}\} \\
& L_{2}=\left\{\left\{\epsilon \cup\left(\{\mathrm{a}, \mathrm{~b}\} \cdot L_{1}\right)\right.\right. \\
&=\{\epsilon\} \cup(\{\mathrm{a}, \mathrm{~b}\} \cdot\{\epsilon, \mathrm{a}, \mathrm{~b}\}) \\
&=\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\}
\end{aligned}
$$

Another Example: $\mathcal{L}\left(\left(\mathbf{a}^{*} \boldsymbol{b}^{*}\right)^{*}\right)$

$$
\begin{aligned}
\mathcal{L}\left(a^{*}\right)= & \{\epsilon, \mathrm{a}, \mathrm{aa}, \ldots\} \\
\mathcal{L}\left(b^{*}\right)= & \{\epsilon, \mathrm{b}, \mathrm{bb}, \ldots\} \\
\mathcal{L}\left(a^{*} b^{*}\right)= & \{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{a}, \mathrm{ab}, \mathrm{bb}, \mathrm{aaa}, \mathrm{aab}, \mathrm{abb}, \mathrm{bbb}, \ldots\} \\
\mathcal{L}\left(\left(a^{*} b^{*}\right)^{*}\right)= & \{\epsilon\} \\
& \cup\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{bb}, \mathrm{aaa}, \mathrm{aab}, \mathrm{abb}, \mathrm{bbb}, \ldots\} \\
& \cup\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{aaa}, \mathrm{aab}, \mathrm{aba}, \mathrm{abb}, \mathrm{baa}, \mathrm{bab}, \mathrm{bba}, \mathrm{bbb}, \ldots\} \\
& \vdots \\
= & \{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \ldots\}
\end{aligned}
$$

Regular Definitions

Assign "names" to regular expressions.
For example,

Shorthands:

Regular Definitions: Examples

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions specify sets of strings over an input alphabet.

- They can hence be used to specify the set of lexemes associated with a token.
\triangleright Used as the pattern language
How do we decide whether an input string belongs to the set of strings specified by a regular expression?

Lexical Analysis

- Regular Expressions and Definitions are used to specify the set of strings (lexemes) corresponding to a token.
- An automaton (DFA/NFA) is built from the above specifications.
- Each final state is associated with an action: emit the corresponding token.

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits separated by a decimal point).

Lex

Tool for building lexical analyzers. Input: lexical specifications (. 1 file)

Output: C function (yylex) that returns a token on each invocation.

$$
[0-9]+" \cdot "[0-9]+\quad\{\text { return(FLOAT_CONSTANT); \}}
$$

Tokens are simply integers (\#define's).

Lex Specifications

Regular Expressions in Lex

Adds "syntactic sugar" to regular expressions:

- Range: [0-7]: Integers from 0 through 7 (inclusive)

[a-nx-zA-Q]: Letters a thru n, x thru z and A thru Q.
- Exception: $[(\wedge) /]$: Any character other than $/$.

- Definition: \{digit $\}$: Use the previously specified regular definition digit.
- Special characters: Connectives of regular expression, convenience features. e.g.: | * ^

Special Characters in Lex

For literal matching, enclose special characters in double quotes (") e.g.: " *" Or use \to escape. e.g.: \"

Examples

for	Sequence of f, o, r	
" \\| "	C-style OR operator (two vert. bars)	
	Sequence of non-newline characters	
[^*/]+	Sequence of characters except * and /	
\"[^"]*\"	Sequence of non-quote characters beginning and ending with a quote	
$\begin{gathered} (\{\text { letter }\} \mid "-")(\{\text { letter }\} \mid\{\text { digit }\} \mid "-")^{*} \\ \text { C-style identifiers } \end{gathered}$		

A Complete Example
\#include <stdio.h>
\#include "tokens.h"
\%\}
digit [0-9]
hexdigit [0-9a-f]
\%\%

Syntax ancalyzer

\{ return(PLUS) ; \}
return(MINUS); \rightarrow)
\{ return(INTEGER_CONSTANT); \}
\{ return(FLOAT_CONSTANT); \}
\{ return(SYNTAX_ERROR); \}

Actions

Actions are attached to final states.

- Distinguish the different final states.
- Used to return tokens.
- Can be used to set attribute values.
- Fragment of C code (blocks enclosed by ' \{' and ' $\}$ ').

Attributes

Additional information about a token's lexeme.

- Stored in variable yylval
- Type of attributes (usually a union) specified by YYSTYPE

- Additional variables:

- yytext: Lexeme (Actual text string)
- yyleng: length of string in yytext
\triangleright yylineno: Current line number (number of ' $\backslash n$ ' seen thus far)
- enabled by \%option yylineno

Priority of matching

What if an input string matches more than one pattern?


```
{ return(TOKEN_IF); }
{ return(TOKEN_ID); }
{ return(TOKEN_WHILE); }
```

- A pattern that matches the longest string is chosen.

Example: ifs is matched with an identifier, not the keyword if.

- Of patterns that match strings of same length, the first (from the top of file) is chosen.

- while is matched as an identifier, not the keyword while.
- Given iff a match will be announced for the keyword if, with 1 being considered as part of the next token.

Constructing Scanners using (f) lex

- Scanner specifications: specifications. 1

- Generated scanner in lex.yy.c

- yywrap (): hook for signalling end of file.
- Use - 1f1 (flex) or -11 (lex) flags at link time to include default function yywrap () that always returns 1 .

Recognizers

Construct automata that recognize strings belonging to a language.

- Finite State Automata \Rightarrow Regular Languages
\triangleright Finite State \rightarrow cannot maintain arbitrary counts.
- Push Down Automata \Rightarrow Context-free Languages
\triangleright Stack is used to maintain counter, but only one counter can go arbitrarily high.

Finite State Automata

Represented by a labeled directed graph.

- A finite set of states (vertices).
- Transitions between states (edges).
- Labels on transitions are drawn from $\Sigma \cup\{\epsilon\}$.
- One distinguished start state.
- One or more distinguished final states.

Finite State Automata: An Example

Consider the Regular Expression $(\mathbf{a} \mid \boldsymbol{b})^{*} \boldsymbol{a}(\boldsymbol{a} \mid \boldsymbol{b})$. $\mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right)=\{\mathrm{aa}, \mathrm{ab}, \mathrm{aaa}, \mathrm{aab}, \mathrm{baa}, \mathrm{bab}$, aaaa, aaab, abaa, abab, baaa, ...\}.

Finite State Automata: An Example

Consider the Regular Expression $\mid(\boldsymbol{a} \mid \boldsymbol{b})^{*}(\boldsymbol{a} \mid \boldsymbol{b})$. $\mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right)=\{\mathrm{aa}, \mathrm{ab}, \mathrm{a} a \mathrm{a}, \mathrm{aab}, \mathrm{baa}, \mathrm{bab}$, \leftarrow semantics aaaa, aaab, abaa, abab, baaa, . ! ? \} $\}$.
The following automaton determines whether an input string belongs to $\mathcal{L}\left((a \mid b)^{*} a(a \mid b):\right.$

Deterministic Vs Nondeterministic FSA

$(a \mid b)^{*} a(a \mid b):$
Nondeterministic:
(NFA)

Deterministic:
(DFA)

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x
... if beginning from the start state
... we can trace some path through the automaton
... such that the sequence of edge labels spells x
... and end in a final state.
Or, there exists a path in the graph from the start state to a final state such that the sequence of labels on the path spells out x

NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

- NFA may have transitions labeled by ϵ.
(Spontaneous transitions)
- All transition labels in a DFA belong to Σ.
- For some string x, there may be many accepting paths in an NFA.
- For all strings x, there is one unique accepting path in a DFA.
- Usually, an input string can be recognized faster with a DFA.
- NFAs are typically smaller than the corresponding DFAs.

NFA vs. DFA

$R=$ Size of Regular Expression
$N=$ Length of Input String

Regular Expressions to NFA
Thompson's Construction: For every regular expression r, derive an NFA $N(r)$ with unique start and final states.

$\alpha \in \Sigma$

Regular Expressions to NFA (contd.)

Example

$$
\left(\begin{array}{l|l}
a & b) \\
& * \\
a & a \\
b
\end{array}\right)
$$

Expressive Power of RE Vs FSA

- We just saw that every RE can be converted into an equivalent NFA
- Implication: NFAs are at least as expressive as REs

Expressive Power of RE Vs FSA

- We just saw that every RE can be converted into an equivalent NFA
- Implication: NFAs are at least as expressive as REs
- It can also be shown that every NFA can be converted into an equivalent RE - Implication: REs are at least as expressive as NFAs

Expressive Power of RE Vs FSA

- We just saw that every RE can be converted into an equivalent NFA - Implication: NFAs are at least as expressive as REs
- It can also be shown that every NFA can be converted into an equivalent RE - Implication: REs are at least as expressive as NFAs
- Implication: REs and NFAs have the same expressive power

Expressive Power of RE Vs FSA

- We just saw that every RE can be converted into an equivalent NFA
- Implication: NFAs are at least as expressive as REs
- It can also be shown that every NFA can be converted into an equivalent RE
- Implication: REs are at least as expressive as NFAs
- Implication: REs and NFAs have the same expressive power
- Where do DFAs stand?
- Every DFA is an NFA
- We will show that every NFA can be converted into an equivalent DFA

Expressive Power of RE Vs FSA

- We just saw that every RE can be converted into an equivalent NFA
- Implication: NFAs are at least as expressive as REs
- It can also be shown that every NFA can be converted into an equivalent RE - Implication: REs are at least as expressive as NFAs
- Implication: REs and NFAs have the same expressive power
- Where do DFAs stand?
- Every DFA is an NFA
- We will show that every NFA can be converted into an equivalent DFA
- Implication: RE, NFA and DFA are equivalent

Recognition with a DFA

Is $\underline{\text { abab }} \in \mathcal{L}\left((\boldsymbol{a} \mid \boldsymbol{b})^{*} \mathbf{a}(\boldsymbol{a} \mid \boldsymbol{b})\right)$?

Recognition with an NFA

Is $\underline{\text { abab }} \in \mathcal{L}\left((\boldsymbol{a} \mid \boldsymbol{b})^{*} \mathbf{a}(\boldsymbol{a} \mid \boldsymbol{b})\right)$?

Input:
a
b
a
b
Path 1:
1

Recognition with an NFA

Is $\underline{\text { abab }} \in \mathcal{L}\left((\boldsymbol{a} \mid \boldsymbol{b})^{*} \boldsymbol{a}(\boldsymbol{a} \mid \boldsymbol{b})\right)$?

Input:

Recognition with an NFA

Is $\underline{\text { abab }} \in \mathcal{L}\left((\boldsymbol{a} \mid \boldsymbol{b})^{*} \boldsymbol{a}(\boldsymbol{a} \mid \boldsymbol{b})\right)$?

Input:
Path 1:
1
b
a
b
1
1

Recognition with an NFA

Is $\underline{\text { abab }} \in \mathcal{L}\left((\boldsymbol{a} \mid \boldsymbol{b})^{*} \mathbf{a}(\boldsymbol{a} \mid \boldsymbol{b})\right)$?

Input:
Path 1:
a
b
$\frac{a}{1}$
b

Recognition with an NFA

Is $\underline{a b a b} \in \mathcal{L}\left((\boldsymbol{a} \mid \boldsymbol{b})^{*} \boldsymbol{a}(\boldsymbol{a} \mid \boldsymbol{b})\right)$?

Input:
Path 1:

Recognition with an NFA

Is $\underline{\text { abab }} \in \mathcal{L}\left((\boldsymbol{a} \mid \boldsymbol{b})^{*} \boldsymbol{a}(\boldsymbol{a} \mid \boldsymbol{b})\right)$?

Input:
Path 1:
1
Path 2:
1

a	b
1	1
1	1

a
b
1
\qquad

Recognition with an NFA

Is $\underline{\text { abab }} \in \mathcal{L}\left((\boldsymbol{a} \mid \boldsymbol{b})^{*} \mathbf{a}(\boldsymbol{a} \mid \boldsymbol{b})\right)$?

Input:		a	b	a	b
Path 1:	1	1	1	1	1
Path 2:	1	1	1	2	

Recognition with an NFA

Is $\underline{\text { abab }} \in \mathcal{L}\left((\boldsymbol{a} \mid \boldsymbol{b})^{*} \boldsymbol{a}(\boldsymbol{a} \mid \boldsymbol{b})\right)$?

Input:		a	b	a	b	
Path 1:	1	1	1	1	1	
Path 2:	1	1	1	2	3	Accept

Recognition with an NFA

Is $\underline{a b a b} \in \mathcal{L}\left((\boldsymbol{a} \mid \boldsymbol{b})^{*} \boldsymbol{a}(\boldsymbol{a} \mid \boldsymbol{b})\right)$?

Recognition with an NFA

Is $\underline{\text { abab }} \in \mathcal{L}\left((\boldsymbol{a} \mid \boldsymbol{b})^{*} \mathbf{a}(\boldsymbol{a} \mid \boldsymbol{b})\right)$?

Recognition with an NFA (contd.)

Is aaab $\in \mathcal{L}\left((\boldsymbol{a} \mid \boldsymbol{b})^{*} \boldsymbol{a}(\boldsymbol{a} \mid \boldsymbol{b})\right)$?

Input:		a	a	a	b	
Path 1:	1	1	1	1	1	
Path 2:	1	1	1	1	2	
Path 3:	1	1	1	2	3	Accept
Path 4:	1	1	2	3	\perp	
Path 5:	1	2	3	\perp	\perp	
All Paths	$\{1\}$	$\{1.2\}$	$\{1,2,3\}$	$\{1,2,3\}$	$\{1,2,3\}$	Accept

Recognition with an NFA (contd.)

Is $\underline{\text { aabb }} \in \mathcal{L}\left((\boldsymbol{a} \mid \boldsymbol{b})^{*} \boldsymbol{a}(\boldsymbol{a} \mid \boldsymbol{b})\right)$?

Input:		a	a	a	b
Path 1:	1	1	1	1	1
Path 2:	1	1	2	3	\perp
Path 3:	1	2	3	\perp	\perp
All Paths	$\{1\}$	$\{1,2\}$	$\{1,2,3\}$	$\{1,3\}$	$\{1\}$
REJECT					

Converting NFA to DFA

b

Converting NFA to DFA (contd.)

Subset construction
Given a set S of NFA states,

- compute $S_{\epsilon}=\epsilon$-closure $(S): S_{\epsilon}$ is the set of all NFA states reachable by zero or more ϵ-transitions from S.
- compute $\sqrt{S}_{\widehat{\alpha}}=\operatorname{goto}(S, \alpha): 1$
- S^{\prime} is the set of all NFA states reachable from S by taking a transition labeled α.
$0 S_{\alpha}=\epsilon$-closure $\left(S^{\prime}\right)$.

Converting NFA to DFA (contd).

Each state in DFA corresponds to a set of states in NFA.
Start state of DFA $=\epsilon$-closure(start state of NFA).
From a state s in DFA that corresponds to a set of states S in NFA:
add a transition labeled α to state s^{\prime} that corresponds to a non-empty S^{\prime} in NFA,
such that $S^{\prime}=\operatorname{goto}(S, \alpha)$.
s is a state in DFA such that the corresponding set of states S in NFA contains a final state of NFA,
$\Leftarrow s$ is a final state of DFA

NFA \rightarrow DFA: An Example

NFA \rightarrow DFA: An Example (contd.)

$$
\begin{array}{ll}
\epsilon-\operatorname{closure}(\{1\}) & =\{1\} \\
\operatorname{goto}(\{1\}, \mathrm{a}) & =\{1,2\} \\
\operatorname{goto}(\{1\}, \mathrm{b}) & =\{1\} \\
\operatorname{goto}(\{1,2\}, \mathrm{a}) & =\underline{\{1,2,3\}} \\
\operatorname{goto}(\{1,2\}, \mathrm{b}) & =\underline{\{1,3\}} \\
\operatorname{goto}(\{1,2,3\}, \mathrm{a}) & =\underline{\{1,2,3\}} \\
\operatorname{goto}(\{1,2,3\}, \mathrm{b}) & =\{1\} \\
\operatorname{goto}(\{1,3\}, \mathrm{a}) & =\{1,2\} \\
\operatorname{goto}(\{1,3\}, \mathrm{b}) & =\{1\}
\end{array}
$$

NFA \rightarrow DFA: An Example (contd.)

Converting RE to FSA

NFA: Compile RE to NFA (Thompson's construction [1968]), then match.
DFA: Compile to DFA, then match
(A) Convert NFA to DFA (Rabin-Scott construction), minimize
(B) Direct construction: RE derivatives [Brzozowski 1964].

- More convenient and a bit more general than (A).
(C) Direct construction of [McNaughton Yamada 1960]

- Can be seen as a (more easily implemented) specialization of (B).
- Used in Lex and its derivatives, i.e., most compilers use this algorithm.

Converting RE to FSA

- NFA approach takes $O(n)$ NFA construction plus $O(n m)$ matching, so has worst case $O(n m)$ complexity.
- DFA approach takes $O\left(2^{n}\right)$ construction plus $O(m)$ match, so has worst case $O\left(2^{n}+m\right)$ complexity.
- So, why bother with DFA?
- In many practical applications, the pattern is fixed and small, while the subject text is very large. So, the $O(m n)$ term is dominant over $O\left(2^{n}\right)$
- For many important cases, DFAs are of polynomial size
- In many applications, exponential blow-ups don't occur, e.g., compilers.

Derivative of Regular Expressions

The derivative of a regular expression R w.r.t. a symbol x denoted $\partial_{x}[R]$ is another regular expression R^{\prime} such that $\mathcal{L}(R)=\mathcal{L}\left(x R^{\prime}\right)$

Basically, $\partial_{x}[R]$ captures the suffixes of those strings that match R and start with x. Examples

- $\partial_{a}[a(b \mid c)]=b \mid c$
- $\partial_{a}[(a \mid b) c d]=c d$
- $\partial_{a}[(a \mid b) * c d]=(a \mid b) * c d<$
- $\partial_{c}[(a \mid b) * c d]=d$
- $\partial_{d}[(a \mid t) * \dot{b} d]=\emptyset$

$$
\begin{aligned}
& \phi=\{ \} \\
& \epsilon=\{\epsilon\}
\end{aligned}
$$

$$
2
$$

Definition of RE Derivative (1)
$\operatorname{inclEps}(R)$: A predicate that returns true if $\epsilon \in \mathcal{L}(R)$

$$
\begin{aligned}
& {[\operatorname{inclEps}(a)=\text { false, } \forall a \in \Sigma \mathcal{L}(a)=\{a\} \nexists \in} \\
& \operatorname{inclEps(R_{1}|R_{2})}=\operatorname{inclEps(R_{1})\vee \operatorname {inclEps}(R_{2})\quad \mathcal {L}(R_{1}|R_{2}),~(R_{1})} \\
& \underset{\operatorname{inclEps}\left(R_{1} R_{2}\right)}{\operatorname{inclEps}\left(R_{*}\right)}=\overline{\operatorname{inclEps}\left(R_{1}\right) \wedge \operatorname{inclEps}\left(R_{2}\right)}=\alpha\left(R_{1}\right) \cup \mathcal{R (R _ { 2 })} \\
& \underline{\operatorname{incl} \operatorname{leps}(R *)}=\text { true } \quad \mathscr{L}\left(R^{*}\right)=\{\epsilon\} \cup \ldots .
\end{aligned}
$$

Note inclEps can be computed in linear-time.

Definition of RE Derivative (2)

$$
\begin{aligned}
& \partial_{\alpha}[\epsilon]=\phi \\
& \partial_{a}[\underline{a}]=\epsilon \\
& \partial_{\underline{a}}[\underline{b}]=\emptyset \\
& \frac{\partial_{a}\left[R_{1} \mid R_{2}\right]}{\partial_{a}[R *]}=\frac{\partial_{a}\left[R_{1}\right] \mid \partial_{a}\left[R_{2}\right]}{\partial_{a}[R] R *}=b / C \\
& \partial_{a}\left[R_{1} R_{2}\right]=\partial_{a}\left[R_{1}\right] R_{2} \partial_{a}\left[R_{2}\right] \text { if inclEps }\left(R_{1}\right) \\
& =\partial_{a}\left[R_{1}\right] R_{2} \quad \text { otherwise } \\
& \begin{array}{l}
a(a b \mid a c) \\
=\frac{\partial_{a}(a b) \mid \partial_{a}(a c)}{=b \mid c}
\end{array}
\end{aligned}
$$

Note: $\mathcal{L}(\epsilon)=\{\epsilon\} \neq \mathcal{L}(\emptyset)=\{ \}$

$$
\partial_{\alpha}\left(E \mid R R^{*}\right)=D_{2} \partial_{\underline{2}\left(R R^{*}\right)}
$$

DFA Using Derivatives: Illustration

Consider $R_{1}=(a \mid b) * a(a \mid b)$
$\begin{aligned} \partial_{a}\left[R_{1}\right] & =\widetilde{R_{1} \mid}(a \mid b)=R_{2} \\ \partial_{b}\left[R_{1}\right] & =R_{1}\end{aligned}$
$\partial_{a}\left[R_{2}\right]=R_{1}|(a \mid b)| \epsilon=\underline{R_{3}}$
$\partial_{b}\left[R_{2}\right]=\widehat{R_{1} \mid \epsilon=R_{4}}$
$\partial_{a}\left[R_{3}\right]=R_{1}|(a \mid b)| \epsilon=R_{3}$
$\partial_{b}\left[R_{3}\right]=R_{1} \mid \epsilon=R_{4}$
$\partial_{a}\left[R_{4}\right]=R_{1} \mid(a \mid b)=R_{2}$
$\partial_{b}\left[R_{4}\right]=R_{1}$
 ,

McNaughton-Yamada Construction

Can be viewed as a simpler way to represent derivatives

- Positions in RE are numbered, e.g., ${ }^{0}\left(a^{1} \mid b^{2}\right) * a^{3}\left(a^{4} \mid b^{5}\right) \6.
- A derivative is identified by its beginning position in the RE
- Or more generally, a derivative is identified by a set of positions
- Each DFA state corresponds to a position set (pset)

$$
\begin{aligned}
R_{1} & \equiv\{1,2,3\} \\
R_{2} & \equiv\{1,2,3,4,5\} \\
R_{3} & \equiv\{1,2,3,4,5,6\} \\
R_{4} & \equiv\{1,2,3,6\}
\end{aligned}
$$

b

McNaughton-Yamada: Definitions

first (P) : Yields the set of first symbols of RE denoted by pset P
Determines the transitions out of DFA state for P
Example: For the RE $\left(a^{1} \mid b^{2}\right) * a^{3}\left(a^{4} \mid b^{5}\right) \$^{6}, \quad$ first $(\{1,2,3\})=\{a, b\}$
$\left.P\right|_{s}:$ Subset of P that contain s, i.e., $\{p \in P \mid R$ contains s at $p\}$
Example: $\left.\{1,2,3\}\right|_{a}=\{1,3\},\left.\{1,2,4,5\}\right|_{b}=\{2,5\}$
follow (P) : set of positions immediately after P, i.e., $\bigcup_{p \in P}$ follow $\left.(\{p\})\right)$
Definition is very similar to derivatives
Example: follow $(\{3,4\})=\{4,5,6\}$

$$
\text { follow }(\{1\})=\{1,2,3\}
$$

McNaughton-Yamada Construction (2)

BuildMY(R, pset)

Create an automaton state S labeled pset
Mark this state as final if \$ occurs in R at pset
foreach symbol $x \in$ first $(p s e t)-\{\$\}$ do
Call BuildMY $\left(R\right.$, follow $\left.\left(\left.p s e t\right|_{x}\right)\right)$ if hasn't previously been called
Create a transition on x from S to the root of this subautomaton

DFA construction begins with the call BuildMY(R, follow $(\{0\}))$. The root of the resulting automaton is marked as a start state.

BuildMY Illustration on $R={ }^{0}\left(a^{1} \mid b^{2}\right) * a^{3}\left(a^{4} \mid b^{5}\right) \6

Computations Needed

$$
\begin{aligned}
& \text { follow }(\{0\})=\{1,2,3\} \\
& \text { follow }(\{1\})=\text { follow }(\{2\})=\{1,2,3\} \\
& \text { follow }(\{3\})=\{4,5\} \\
& \text { follow }(\{4\})=\text { follow }(\{5\})=\{6\}
\end{aligned}
$$

$$
\left.\{1,2,3\}\right|_{a}=\{1,3\},\left.\quad\{1,2,3\}\right|_{b}=\{2\}
$$

$$
\text { follow }(\{1,3\})=\{1,2,3,4,5\}
$$

$$
\left.\{1,2,3,4,5\}\right|_{a}=\{1,3,4\}
$$

$$
\left.\{1,2,3,4,5\}\right|_{b}=\{2,5\}
$$

$$
\text { follow }(\{1,3,4\})=\{1,2,3,4,5,6\}
$$

$$
\text { follow }(\{2,5\})=\{1,2,3,6\}
$$

$$
\left.\{1,2,3,4,5,6\}\right|_{a}=\{1,3,4\}
$$

$$
\left.\{1,2,3,4,5,6\}\right|_{b}=\{2,5\}
$$

$$
\left.\{1,2,3,6\}\right|_{a}=\left.\{1,3\} \quad\{1,2,3,6\}\right|_{b}=\{2\}
$$

Resulting Automaton

McNaughton-Yamada (MY) Vs Derivatives

- Conceptually very similar
- MY takes a bit longer to describe, and its correctness a bit harder to follow.
- MY is also more mechanical, and hence is found in most implementations
- Derivatives approach is more general
- Can support some extensions to REs, e.g., complement operator
- Can avoid some redundant states during construction
- Example: For $a c \mid b c$, DFA built by derivative approach has 3 states, but the one built by MY construction has 4 states
The derivative approach merges the two c 's in the RE, but with MY, the two c 's have different positions, and hence operations on them are not shared.

Avoiding Redundant States

- Automata built by MY is not optimal
- Automata minimization algorithms can be used to produce an optimal automaton.
- Derivatives approach associates DFA states with derivatives, but does not say how to determine equality among derivatives.
- There is a spectrum of techniques to determine RE equality
- MY is the simplest: relies on syntactic identity
- At the other end of the spectrum, we could use a complete decision procedure for RE equality.
- In this case, the derivative approach yields the optimal RE!
- In practice we would tend to use something in the middle
- Trade off some power for ease/efficiency of implementation

RE to DFA conversion: Complexity

- Given DFA size can be exponential in the worst case, we obviously must accept worst-case exponential complexity.
- For the derivatives approach, it is not immediately obvious that it even terminates!
- More obvious for McNaughton-Yamada approach, since DFA states correspond to position sets, of which there are only 2^{n}.
- Derivative computation is linear in RE size in the general case.
- So, overall complexity is $O\left(n 2^{n}\right)$
- Complexity can be improved, but the worst-case 2^{n} takes away some of the rationale for doing so.
- Instead, we focus on improving performance in many frequently occurring special cases where better complexity is achievable.

Using States in Lex

$$
k=3 n+1
$$

- Some regular languages are more easily expressed as FSA
- Set of all strings representing binary numbers divisible by 3
- Lex allows you to use FSA concepts using start states

Other Special Directives

- ECHO causes Lex to echo current lexeme
- REJECT causes abandonment of current match in favor of the next.
- Example
a
ab|
abc|
abcd \{ECHO; REJECT; \}
. \mid \n $\{/$ * eat up the character */\}

Implementing a Scanner

```
transition: state }\times\Sigma->\mathrm{ state
algorithm scanner() {
    current_state = start state;
    while (1) {
        c = getc(); /* on end of file, ... */
        if defined(transition(current_state, c))
            current_state = transition(current_state, c);
        else
            return s;
    }
}
```


Implementing a Scanner (contd.)

Implementing the transition function:

- Simplest: 2-D array.

Space inefficient.

- Traditionally compressed using row/colum equivalence. (default on (f) lex) Good space-time tradeoff.
- Further table compression using various techniques:
- Example: RDM (Row Displacement Method):

Store rows in overlapping manner using 2 1-D arrays.
Smaller tables, but longer access times.

Lexical Analysis: A Summary

Convert a stream of characters into a stream of tokens.

- Make rest of compiler independent of character set
- Strip off comments
- Recognize line numbers
- Ignore white space characters
- Process macros (definitions and uses)
- Interface with symbol (name) table.

