- A.k.a. Syntax Analysis
- Recognize *sentences* in a language.
- Discover the structure of a document/program.
- Construct (implicitly or explicitly) a tree (called as a parse tree) to represent the structure.
- The above tree is used later to guide the translation.

Grammars

The syntactic structure of a language is defined using grammars.

- Grammars (like regular expressions) specify a set of strings over an alphabet.
- Efficient *recognizers* (like DFA) can be constructed to efficiently determine whether a string is in the language.
- Language hierarchy:
 - Finite Languages (FL) Enumeration
 - Regular Languages (RL ⊃ FL) Regular Expressions
 - Context-free Languages (CFL \supset RL) Context-free Grammars

Regular Languages

Languages represented by regular expressions	≡	Languages recognized by finite automata
---	---	---

Examples:

$$\checkmark \{a, b, c\}$$

$$\checkmark \{\epsilon, a, b, aa, ab, ba, bb, \ldots\}$$

$$\checkmark \{(ab)^n \mid n \ge 0\}$$

$$\times \{a^n b^n \mid n \ge 0\}$$

Grammars

Notation where recursion is explicit. Examples

• $\{\epsilon, a, b, aa, ab, ba, bb, \ldots\}$:

Notational shorthand:

• $\{a^nb^n \mid n \ge 0\}$:

 $\begin{array}{ccccc} E & \longrightarrow & \mathbf{a} \\ E & \longrightarrow & \mathbf{b} \\ S & \longrightarrow & \epsilon \end{array}$

• $\{w \mid no. of a's in w = no. of b's in w\}$

Context-free Grammars

- Terminal Symbols: Tokens
- Nonterminal Symbols: set of strings made up of tokens
- Productions: Rules for constructing the set of strings associated with non-terminal symbols.

Example: $Stmt \longrightarrow$ while Expr do Stmt

Start symbol: nonterminal symbol that represents the set of all strings in the language.

Example

$$E \longrightarrow E + E$$

$$E \longrightarrow E - E$$

$$E \longrightarrow E * E$$

$$E \longrightarrow E / E$$

$$E \longrightarrow (E)$$

$$E \longrightarrow id$$

 $\mathcal{L}(E) = \{ \mathrm{id}, \mathrm{id} + \mathrm{id}, \mathrm{id} - \mathrm{id}, \dots, \mathrm{id} + (\mathrm{id} * \mathrm{id}) - \mathrm{id}, \dots \}$

Context-free Grammars

Production: rule with *non-terminal* symbol on left hand side, and a (possibly empty) sequence of terminal or non-terminal symbols on the right-hand side. Notations:

- Terminals: lower case letters, digits, punctuation
- Nonterminals: Upper case letters
- Arbitrary Terminals/Nonterminals: X, Y, Z
- Strings of Terminals: *u*, *v*, *w*
- Strings of Terminals/Nonterminals: $lpha, eta, \gamma$
- Start Symbol: S

Context-Free Vs Other Types of Grammars

- Context-free grammar (CFG): Productions of the form $NT \longrightarrow [NT|T] *$
- Context-sensitive grammar (CSG): Productions of the form $[t|NT] * NT[t|NT] * \longrightarrow [t|NT] *$
- Unrestricted grammar: Productions of the form $[t|NT]* \longrightarrow [t|NT]*$

Examples of Non-Context-Free Languages

- Checking that variables are declared before use. If we simplify and abstract the problem, we see that it amounts to recognizing strings of the form *wsw*
- Checking whether the number of actual and formal parameters match. Abstracts to recognizing strings of the form $a^n b^m c^n d^m$
- In both cases, the rules are not enforced in grammar but deferred to type-checking phase
- Note: Strings of the form wsw^R and $a^nb^nc^md^m$ can be described by a CFG

What types of Grammars Describe These Languages?

- Strings of 0's and 1's of form xx
- Strings of 0's and 1's in which 011 doesn't occur
- Strings of 0's and 1's in which each 0 is immediately followed by a 1
- Strings of 0's and 1's with ithe equal number of 0's and 1's.

Language Generated by Grammars, Equivalence of Grammars

- How to show that a grammar G generates a language \mathcal{M} ? Show that
 - $\forall s \in \mathcal{M}$, show that $s \in \mathcal{L}(G)$
 - $\forall s \in \mathcal{L}(G)$, show that $s \in \mathcal{M}$
- How to establish that two grammars G_1 and G_2 are equivalent? Show that $\mathcal{L}(G_1) = \mathcal{L}(G_2)$

Grammar Examples

$S \longrightarrow 0S1S|1S0S|\epsilon$

What is the language generated by this grammar?

Grammar Examples

$$S \longrightarrow 0A|1B|\epsilon$$

$$A \longrightarrow 0AA | 1S$$

$B \longrightarrow 1BB|0S$

What is the language generated by this grammar?

Specify a set of strings in a language. **Recognize** strings in a given language:

Is a given string x in the language?
 Yes, if we can construct a *derivation* for x

• Example: Is $id + id \in \mathcal{L}(E)$?

$$id + id \iff E + id$$
$$\iff E + E$$
$$\iff E$$

Derivations

• $\alpha A\beta \Longrightarrow \alpha \gamma \beta$ iff $A \longrightarrow \gamma$ is a production in the grammar.

- $\alpha \stackrel{*}{\Longrightarrow} \beta$ if α derives β in zero or more steps. Example: $E \stackrel{*}{\Longrightarrow} id + id$
- Sentence: A sequence of terminal symbols w such that $S \stackrel{+}{\Longrightarrow} w$ (where S is the start symbol)
- Sentential Form: A sequence of terminal/nonterminal symbols α such that $S \stackrel{*}{\Longrightarrow} \alpha$

Derivations

• Rightmost derivation: Rightmost non-terminal is replaced first:

$$E \implies E + E$$
$$\implies E + id$$
$$\implies id + id$$

Written as $E \stackrel{*}{\Longrightarrow} rm$ id + id

• Leftmost derivation: Leftmost non-terminal is replaced first:

$$E \implies E + E$$
$$\implies id + E$$
$$\implies id + id$$

Written as $E \stackrel{*}{\Longrightarrow}_{lm} id + id$

Ambiguity

A Grammar is *ambiguous* if there are multiple parse trees for the same sentence.

Example: id + id * id

Disambiguition

Express Preference for one parse tree over others.

Example: id + id * id

The usual precedence of * over + means:

Parsing

Construct a parse tree for a given string.

A Procedure for Parsing

Grammar: $S \rightarrow a$

procedure parse_S() {
 switch (input_token) {
 case TOKEN_a:
 consume(TOKEN_a);
 return;
 default:
 /* Parse Error */
 }

Predictive Parsing

```
\begin{array}{ccccc} \mathbf{Grammar:} & \begin{array}{cccc} S & \longrightarrow & a \\ S & \longrightarrow & \epsilon \end{array} \end{array}
```

```
procedure parse_S() {
   switch (input_token) {
      case TOKEN a: /* Production 1 */
          consume(TOKEN_a);
          return;
      case TOKEN EOF: /* Production 2 */
          return;
      default:
         /* Parse Error */
```

Predictive Parsing (contd.)

Predictive Parsing (contd.)

$$\begin{array}{cccc} S & \longrightarrow & (S)S \\ \mathbf{Grammar}: & S & \longrightarrow & a \\ S & \longrightarrow & \epsilon \end{array}$$

case TOKEN_a: /* Production 2 */
 consume(TOKEN_a);
 return;
case TOKEN_CLOSE_PAREN:
case TOKEN_EOF: /* Production 3 */
 return;
default:
 /* Parse Error */

Predictive Parsing: Restrictions

Grammar cannot be left-recursive

```
Example: E \longrightarrow E + E \mid a
  procedure parse E() {
      switch (input token) {
         case TOKEN a: /* Production 1 */
            parse_E();
            consume(TOKEN PLUS);
            parse E();
            return:
         case TOKEN a: /* Production 2 */
            consume(TOKEN a);
            return;
```

Removing Left Recursion

$$\begin{array}{cccc} A & \longrightarrow & A \ a \\ A & \longrightarrow & b \end{array}$$

$$\mathcal{L}(A) = \{b, ba, baa, baaa, baaaa, \ldots\}$$

$$\begin{array}{rccc} A & \longrightarrow & bA' \\ A' & \longrightarrow & aA' \\ A' & \longrightarrow & \epsilon \end{array}$$

More generally,

Can be transformed into

$$\begin{array}{cccc} A & \longrightarrow & A\alpha_{1} | \cdots | A\alpha_{m} \\ A & \longrightarrow & \beta_{1} | \cdots | \beta_{n} \end{array}$$
$$\begin{array}{cccc} A & \longrightarrow & \beta_{1} A' | \cdots | \beta_{n} A' \\ A' & \longrightarrow & \alpha_{1} A' | \cdots | \alpha_{m} A' | \epsilon \end{array}$$

Removing Left Recursion: An Example

Predictive Parsing: Restrictions

May not be able to choose a *unique* production

$$\begin{array}{cccc} S & \longrightarrow & a \ B \ d \ B & \longrightarrow & b \ B \ \longrightarrow & bc \end{array}$$

Left-factoring can help:

$$\begin{array}{rcl} S & \longrightarrow & a \ B \ d \\ B & \longrightarrow & b \\ C & \longrightarrow & c | \epsilon \end{array}$$

Predictive Parsing: Restrictions

In general, though, we may need a backtracking parser: Recursive Descent Parsing

- $S \longrightarrow a B d$
- $B \longrightarrow b$
- $B \longrightarrow bc$

Recursive Descent Parsing

$$\begin{array}{cccc} S & \longrightarrow & a \ B \ d \\ \mathbf{Grammar:} & B & \longrightarrow & b \\ B & \longrightarrow & bc \end{array}$$

procedure *parse_B()* { switch (input_token) { case TOKEN_b: /* Production 2 */ consume(TOKEN b); return; case TOKEN b: /* Production 3 */ consume(TOKEN b); consume(TOKEN c); return;

}}

Instead of recursion,

use an explicit *stack* along with the parsing table.

Data objects:

- **Parsing Table**: *M*(*A*, *a*), a two-dimensional array, dimensions indexed by nonterminal symbols (*A*) and terminal symbols (*a*).
- A Stack of terminal/nonterminal symbols
- Input stream of tokens

The above data structures manipulated using a table-driven parsing program.

Table-driven Parsing

\frown							
	Grammar		$\begin{array}{cccc} A & \longrightarrow & a \\ B & \longrightarrow & b \end{array}$	S — S —	$\begin{array}{cccc} S & \longrightarrow & A \ S \ B \\ S & \longrightarrow & \epsilon \end{array}$		
Parsing Table:							
			Input Symbol				
		Nonterminal	а	b	EOF		
		S	$S \longrightarrow A S E$	$3 S \longrightarrow \epsilon$	$S \longrightarrow \epsilon$		
		A	$A \longrightarrow a$				
		В		$B \longrightarrow b$			

```
stack initialized to EOF.
while (stack is not empty) {
   X = top(stack);
   if (X is a terminal symbol)
       consume(X);
   else /* X is a nonterminal */
       if (M[X, input\_token] = X \longrightarrow Y_1, Y_2, \ldots, Y_k)
           pop(stack);
           for i = k downto 1 do
              push(stack, Y_i);
       else /* Syntax Error */
```

Grammar: $S \longrightarrow (S)S \mid a \mid \epsilon$

- FIRST(X) = First character of any string that can be derived from X
 FIRST(S) = {(, a, ε}.
- FOLLOW(*A*) = First character that, in any derivation of a string in the language, appears immediately after *A*.

 $FOLLOW(S) = \{), EOF\}$

FIRST and FOLLOW (contd.)

 $a \in FIRST(C)$ $b \in FOLLOW(C)$
FIRST and FOLLOW

FIRST(X):

First terminal in some α such that $X \stackrel{*}{\Longrightarrow} \alpha$. FOLLOW(A): First terminal in some β such that $S \stackrel{*}{\Longrightarrow} \alpha A\beta$.

Grammar	$A \longrightarrow$	а	$S \longrightarrow$	ASB
Of annual :	$B \longrightarrow$	Ь	$S \longrightarrow$	ϵ

First(S)	=	$\{a, \epsilon\}$	Follow(S)	=	$\{ b, EOF \}$
First(A)	=	{ a }	Follow(A)	=	{ a, b }
First(B)	=	{ b }	Follow(B)	=	$\{b, EOF\}$

Definition of FIRST

Grammar:
$$A \longrightarrow a$$
 $S \longrightarrow ASB$ $B \longrightarrow b$ $S \longrightarrow \epsilon$

$FIRST(\alpha)$ is the smallest set such that

$\alpha =$	Property of <i>FIRST</i> (α)
a, a terminal	$a \in FIRST(\alpha)$
A, a nonterminal	$A \longrightarrow \epsilon \in G \Longrightarrow \epsilon \in FIRST(\alpha)$ $A \longrightarrow \beta \in G, \ \beta \neq \epsilon \Longrightarrow FIRST(\beta) \subseteq FIRST(\alpha)$
X ₁ X ₂ X _k , a string of terminals and non-terminals	$FIRST(X_1) - \{\epsilon\} \subseteq FIRST(\alpha)$ $FIRST(X_i) \subseteq FIRST(\alpha) \text{ if } \forall j < i \epsilon \in FIRST(X_j)$ $\epsilon \in FIRST(\alpha) \text{ if } \forall j < k \epsilon \in FIRST(X_j)$

Definition of FOLLOW

Grammar:
$$A \longrightarrow a$$
 $S \longrightarrow ASB$ $B \longrightarrow b$ $S \longrightarrow \epsilon$

FOLLOW(A) is the smallest set such that

Α	Property of FOLLOW(A)	
- S the start symbol	$EOF \in FOLLOW(S)$	
= 5, the start symbol	Book notation: $ \in FOLLOW(S) $	
$B \longrightarrow \alpha A \beta \in G$	$\mathit{FIRST}(eta) - \{\epsilon\} \subseteq \mathit{FOLLOW}(A)$	
$B \longrightarrow \alpha A$, or	$FOULOW(B) \subset FOULOW(A)$	
$B \longrightarrow \alpha A \beta, \epsilon \in FIRST(\beta)$		

A Procedure to Construct Parsing Tables

```
procedure table construct(G) {
    for each A \longrightarrow \alpha \in G {
         for each a \in FIRST(\alpha) such that a \neq \epsilon
              add A \longrightarrow \alpha to M[A, a];
         if \epsilon \in FIRST(\alpha)
              for each b \in FOLLOW(A)
                   add A \longrightarrow \alpha to M[A, b];
}}
```

Grammars for which the parsing table constructed earlier has no multiple entries.

$$\begin{array}{ccc} E & \longrightarrow & \mathrm{id} \ E' \\ E' & \longrightarrow & + E \ E' \\ E' & \longrightarrow & \epsilon \end{array}$$

	Input Symbol			
Nonterminal	id + EOF			
E	$E \longrightarrow \operatorname{id} E'$			
E'		$E' \longrightarrow + E E'$	$E' \longrightarrow \epsilon$	

Parsing with LL(1) Grammars

	Input Symbol			
Nonterminal	id + EOF			
E	$E \longrightarrow \operatorname{id} E'$			
E'		$E' \longrightarrow + E E'$	$E' \longrightarrow \epsilon$	

\$ <i>E</i>	id + id\$	Ε	\implies	id <i>E</i> ′
\$ <i>E</i> ′id	id + id\$			
\$ <i>E'</i>	+ id\$		\implies	id+ <i>EE</i> ′
E'E+	+ id\$			
\$ <i>E'E</i>	id\$		\implies	id+id <i>E'E</i>
\$ <i>E'E</i> 'id	id\$			
\$ <i>E'E'</i>	\$		\implies	id+id <i>E</i> ′
\$ <i>E</i> ′	\$		\implies	id+id
\$	\$			

LL(1) Derivations

Left to Right Scan of input

Leftmost Derivation

(1) look ahead 1 token at each step

Alternative characterization of LL(1) Grammars:

Whenever $A \longrightarrow \alpha \mid \beta \in G$

1. $FIRST(\alpha) \cap FIRST(\beta) = \{\}$, and

2. if $\alpha \stackrel{*}{\Longrightarrow} \epsilon$ then $FIRST(\beta) \cap FOLLOW(A) = \{ \}.$

Corollary: No Ambiguous Grammar is LL(1).

Leftmost and Rightmost Derivations

	$E \longrightarrow$	$\rightarrow E+T$
	$E \longrightarrow$	→ T
	$T \longrightarrow$	→ id
Derivations for id + id:		
	$E \implies E+T$	$E \implies E+T$
	\implies $T+T$	\implies E+id
	\implies id+T	\implies T+id
	\implies id+id	\implies id+id
	LEFTMOST	RIGHTMOST

Bottom-up Parsing

Given a stream of tokens *w*, *reduce* it to the start symbol.

$$\begin{array}{cccc} E & \longrightarrow & E+T \\ E & \longrightarrow & T \\ T & \longrightarrow & \mathrm{id} \end{array}$$

Parse input stream: id + id:

$$\begin{array}{c} \text{id + id} \\ T + \text{id} \\ E + \text{id} \\ E + T \\ \hline E \\ \end{array}$$

Reduction \equiv **Derivation**⁻¹.

Handles

Informally, a "handle" of a sentential form is a substring that matches the right side of a production, and

whose reduction to the non-terminal on the left hand side of the production represents one step along the reverse rightmost derivation.

Handles

A structure that furnishes a means to perform reductions.

$$\begin{array}{cccc} E & \longrightarrow & E+T \\ E & \longrightarrow & T \\ T & \longrightarrow & \mathrm{id} \end{array}$$

Parse input stream: id + id:

$$id + id$$

$$T + id$$

$$E + id$$

$$E + T$$

$$E$$

Handles are substrings of sentential forms:

- 1. A substring that matches the right hand side of a production
- 2. Reduction using that rule can lead to the start symbol

$$\begin{array}{ccc} \overline{E} & \Longrightarrow & \overline{E+T} & \Rightarrow \\ & \Rightarrow & \overline{E+id} \\ & \Rightarrow & \overline{T}+id \\ & \Rightarrow & id+id \end{array}$$

 $T \rightarrow T \neq T$ $id + id \approx id$ $T \rightarrow T$ $T \rightarrow T$

Handle Pruning: replace handle by corresponding LHS.

Bottom-up parsing.

- Shift: Construct leftmost handle on top of stack
- Reduce: Identify handle and replace by corresponding RHS
- Accept: Continue until string is reduced to start symbol and input token stream is empty
- Error: Signal parse error if no handle is found.

Implementing Shift-Reduce Parsers

- Stack to hold grammar symbols (corresponding to tokens seen thus far).
- Input stream of yet-to-be-seen tokens.
- Handles appear on top of stack.
- Stack is initially empty (denoted by \$).
- Parse is successful if stack contains only the start symbol when the input stream ends.

and nonterminals

terminals

Shift-Reduce Parsing: An Example

$$\begin{array}{cccc} S & \longrightarrow & aABe \\ A & \longrightarrow & Abc|b \\ B & \longrightarrow & d \end{array}$$

To parse: *a b b c d e*

Shift-Reduce Parsing: An Example

$$\begin{array}{cccc} E & \longrightarrow & E+T \\ E & \longrightarrow & T \\ T & \longrightarrow & \text{id} \end{array}$$

Stack	Input Stream	Action
\$	(id)+ id \$	shift
\$ id	+ id \$	reduce by $T \longrightarrow id$
\$ [*] T	+ id \$	reduce by $E \longrightarrow T$
\$ E	+ id \$	shift
\$ E +	id \$	shift
\$ <i>E</i> + id	\$	reduce by $T \longrightarrow id$
E + T	\$	reduce by $E \longrightarrow E + T$
\$ E	\$	ACCEPT

More on Handles

Handle: Let $S \Longrightarrow_{rm}^* \alpha Aw \Longrightarrow_{rm} \alpha \beta w$. Then $A \longrightarrow \beta$ is a handle for $\alpha \beta w$ at the position imeediately following α .

Notes:

- For unambiguous grammars, every right-sentential form has a unique handle.
- In shift-reduce parsing, handles always appear on top of stack, i.e., $\alpha\beta$ is in the stack (with β at top), and w is unread input.

Identification of Handles and Relationship to Conflicts

Case 1: With $\alpha\beta$ on the stack, don't know if we have a handle on top of the stack, or we need to shift some more input to get βx which is a handle.

- Shift-reduce conflict
- Example: if-then-else

Case 2: With $\alpha\beta_1\beta_2$ on the stack, don't know if $A \longrightarrow \beta_2$ is the handle, or $B \longrightarrow \beta_1\beta_2$ is the handle

- Reduce-reduce conflict
- Example: $E \longrightarrow E E| E| id$

- Prefix of a right-sentential form that does not continue beyond the rightmost handle.
- With $\alpha\beta w$ example of the previous slides, a viable prefix is something of the form $\alpha\beta_1$ where $\beta = \beta_1\beta_2$

LR Parsing

LR Parsing

- *action* and *goto* depend only on the state at the top of the stack, not on all of the stack contents
 - The *s_i* states compactly summarize the "relevant" stack content that is at the top of the stack.
- You can think of *goto* as the action taken by the parser on "consuming" (and shifting) nonterminals
 - similar to the shift action in the *action* table, except that the transition is on a nonterminal rather than a terminal
- The *action* and *goto* tables define the transitions of an FSA that accepts RHS of productions!

Example of LR Parsing Table and its Use

- See Text book Algorithm 4.7: (follows directly from description of LR parsing actions 2 slides earlier)
- See expression grammar (Example 4.33), its associated parsing table in Fig 4.31, and the use of the table to parse id * id + id (Fig 4.32)

Intuitively:

- LL parser needs to guess the production based on the first symbol (or first few symbols) on the RHS of a production
- LR parser needs to guess the production *after* seeing all of the RHS

Both types of parsers can use next k input symbols as look-ahead symbols (LL(k) and LR(k) parsers)

• Implication: $LL(k) \subset LR(k)$

How to Construct LR Parsing Table?

Key idea: Construct an FSA to recognize RHS of productions

- States of FSA remember which parts of RHS have been seen already.
- We use "·" to separate seen and unseen parts of RHS
 LR(0) item: A production with "·" somewhere on the RHS. Intuitively,
 grammar symbols <u>before</u> the "·" are on stack;
- \triangleright grammar symbols <u>after</u> the " \cdot " represent symbols in the input stream.

$$\begin{array}{c}
E' \longrightarrow \cdot E \\
E \longrightarrow \cdot E + T \\
\hline
E \longrightarrow \cdot T \\
T \longrightarrow \cdot id
\end{array}$$

F'->E.

 $E \rightarrow T$.

T - id.

E'-RE

s~~~S

 $E \rightarrow E \cdot + T$ $E \rightarrow E + \cdot T$

How to Construct LR Parsing Table?

- If there is no way to distinguish between two different productions at some point during parsing, then the same state should represent both.
 - *Closure* operation: If a state *s* includes LR(0) item $A \rightarrow \alpha \cdot B\beta$, and there is a production $B \rightarrow \gamma$, then *s* should include $B \rightarrow \gamma$
 - *goto* operation: For a set *I* of items, *goto*[*I*, *X*] is the closure of all items $A \rightarrow \alpha X : \beta$ for each $A \rightarrow \alpha : X\beta$ in I

Item set: A set of items that is closed under the *closure* operation, corresponds to a <u>state</u> of the parser.

Constructing Simple LR (SLR) Parsing Tables

Step 1: Construct LR(0) items (Item set construction) - states

Step 2: Construct a DFA for recognizing items

Step 3: Define action and goto based on the DFA

- 1. Augment the grammar with a rule $S' \longrightarrow S$, and make S' the new start symbol
- 2. Start with initial set I_0 corresponding to the item $S' \longrightarrow S$
- **3.** apply *closure* operation on I_0 .
- 4. For each item set I and grammar symbol X, add goto[I, X] to the set of items
- 5. Repeat previous step until no new item sets are generated.

Item Set Construction

Item Set Construction (Contd.)

 $I_7: T \longrightarrow T * \cdot F$

Item Set Construction (Contd.)

$E' \longrightarrow E$	$E \longrightarrow E + T \mid T$	$T \longrightarrow T * F \mid F$	$F \longrightarrow (E) \mid id$
$I_8: F \longrightarrow (E \cdot)$			
$I_9: E \longrightarrow E + T \cdot$			
$I_{10}: T \longrightarrow T * F \cdot$			
$I_{11}: F \longrightarrow (E) \cdot$			

Item Sets for the Example

<i>I</i> ₀ :	$\frac{E' \to \cdot E}{E \to \cdot E + T}$	₹ Is:	$F \rightarrow \mathbf{id}$
	$\frac{E}{E} \rightarrow T$	16:	$E \rightarrow E + \cdot T$
	$T \rightarrow T * F$		$T \rightarrow \cdot T * F$
	$T \rightarrow F$		$T \rightarrow \cdot F$
	$F \rightarrow \cdot (E)$		$F \rightarrow \cdot (E)$
	$F \rightarrow \operatorname{id}$		$F \rightarrow \cdot \mathbf{id}$
<i>I</i> ₁ :	$E' \rightarrow E \cdot $	17:	$T \rightarrow T * \cdot F$
	$E \rightarrow E \cdot + T$		$F \rightarrow \cdot (E)$
	/		$F \rightarrow \cdot \mathbf{id}$
12:	$E \rightarrow I$.		E (E)
	$I \rightarrow I + r$	18.	$F \rightarrow E + T$
I3:	$T \rightarrow F \cdot$		6 - 6 - 1 1
		19:	$E \to E + T \cdot$
I4:	$F \rightarrow (\cdot E)$		$T \to T \cdot \ast F$
	$E \rightarrow \cdot E + T$		
	$E \to T$	I 10:	$T \rightarrow T * F \cdot$
	$T \rightarrow F$	1	$F \rightarrow (F)$.
	$\overrightarrow{F} \rightarrow \cdot (\overrightarrow{E})$	111.	1 (2)
	$F \rightarrow \cdot \mathbf{id}$		

SLR(1) Parse Table for the Example Grammar

Defining action and goto tables

- Let I_0, I_1, \ldots, I_n be the item sets constructed before
- La.B

FOLLOW

- Define action as follows
 - If $A \longrightarrow \alpha \cdot a\beta$ is in I_i and there is a DFA transition to I_j from I_i on symbol a then action[i, a] = "shift j"

IR(O)

- If $A \longrightarrow \alpha \cdot \text{ is in } I_i \text{ then } action[i, a] = "reduce <math>A \longrightarrow \alpha$ " for every $\alpha \in FOLLOW(A)$
- If $S' \longrightarrow S$ is in I_i then $action[I_i, \$] = "accept"$
- If any conflicts arise in the above procedure, then the grammar is *not* SLR(1).
- goto transition for LR parsing defined directly from the DFA transitions.
- All undefined entries in the table are filled with "error"

Defining action and goto tables

- Let I_0, I_1, \ldots, I_n be the item sets constructed before
- Define action as follows
 - If $A \rightarrow \alpha a\beta$ is in I_i and there is a DFA transition to I_j from I_i on symbol a then $action[i, a] = "shift j" \qquad b$

IR(O)

La.B

- If $A \longrightarrow \alpha \odot$ is in I_i then $action[i, a] = "reduce] A \longrightarrow \alpha"$ for every $a \in FOLLOW(A)$
- If $S' \longrightarrow S_{\bigcirc}$ is in I_i then $action[I_i, \$] = "accept"$
- If any conflicts arise in the above procedure, then the grammar is not SLR(1).
- goto transition for LR parsing defined directly from the DFA transitions.
- All undefined entries in the table are filled with "error"

FOLLOW

, d.aB

Deficiencies of SLR Parsing

SLR = LRG) item sets f I = 150k alead for reduction SLR(1) treats all occurrences of a RHS on stack as identical. S->ab ba Only a few of these reductions may lead to a successful parse. FOLLOW $(A) = \{a, b\}$ Follow $(B) = \{a, b\}$ Example: $\rightarrow AaAb$ $\rightarrow BbBa$ $I_0 = \{ [S' \to \cdot S], [S \to : AaAb], [S \to \cdot BibBa], [A \to \cdot], [B \to \cdot] \}.$ Since FOLLOW(A) = FOLLOW(B), we have reduce/reduce conflict in state 0.

LR(1) Item Sets

Construct LR(1) items of the form $A \longrightarrow \alpha - \beta$, a, which means:

The production $A \longrightarrow \alpha \beta$ can be applied when the next token on input stream is a.

$$\begin{array}{cccc} S & \longrightarrow & AaAb & A \longrightarrow \epsilon \\ S & \longrightarrow & BbBa & B \longrightarrow \epsilon \end{array}$$

An example LR(1) item set:

$$I_0 = \{ [S' \to \cdot S, \$], [S \to \cdot A a A b, \$], [S \to \cdot B b B a, \$], \\ [A \to \cdot, a], [B \to \cdot, b] \}.$$

LR(1) and LALR(1) Parsing

LR(1) parsing: Parse tables built using LR(1) item sets.

LALR(1) parsing: *Look Ahead* LR(1)

Merge LR(1) item sets; then build parsing table.

LR(1) item sets that are identical except for the look ahead the merged

Typically, LALR(1) parsing tables are much smaller than LR(1) parsing table. $\begin{bmatrix} A \rightarrow \cdot, a \end{bmatrix} \xrightarrow{merged} \begin{bmatrix} A \rightarrow \cdot, b \end{bmatrix} \xrightarrow{(A \rightarrow \cdot, b)} \xrightarrow{(A \rightarrow \cdot, b)$ <u>Yet Another Compiler Compiler:</u> LALR(1) parser generator.

- Grammar rules are written in a specification (.y) file, analogous to the regular definitions in a lex specification file.
- Yacc translates the specifications into a parsing function yyparse().

Using Yacc

YACC

Yet <u>Another Compiler</u> Compiler: LALR(1) parser generator.

- Grammar rules are written in a specification (.y) file, analogous to the regular definitions in a lex specification file.
- Yacc translates the specifications into a parsing function yyparse().

spec.y
$$\xrightarrow{\text{yacc}}$$
 spec.tab.c

- yyparse() calls yylex() whenever input tokens need to be consumed.
- bison: GNU variant of yacc.

Using Yacc

```
%{
  ... C headers (#include)
%}
... Yacc declarations:
       %token ...
       %union{...}
       precedences
%%
... Grammar rules with actions:
Expr: Expr TOK_PLUS Expr
       Expr TOK MINUS Expr
    ;
%%
... C support functions
```

Conflicts and Resolution

if Start > if Expr Ken S j if Expr Ken S else s

- Operator precedence works well for resolving conflicts that involve operators
 - But use it with care only when they make sense, not for the sole purpose of removing conflict reports
- Shift-reduce conflicts: Bison favors shift
 - Except for the dangling-else problem, this strategy does not ever seem to work, so don't rely on it.
 if (x=0) then

Reduce-Reduce Conflicts

Sample Bison File: Postfix Calculator

input:	/* empty */		
	input line		
;			
line:	'\n'		
	exp '\n'	{ printf ("\t%.10g\n"	, \$1); }
;			
exp:	NUM	$\{ \$\$ = \$1;$	}
	exp exp '+'	$\{ \$\$ = \$1 + \$2;$	}
	exp exp '-'	$\{ \$\$ = \$1 - \$2;$	}
	exp exp '*'	$\{ \$\$ = \$1 * \$2;$	}
	exp exp '/'	$\{ \$\$ = \$1 / \$2;$	}
	/* Exponentiatio	on */	
	exp exp '^'	$\{\$ = pow (\$1, \$2);$	}
	/* Unary minus	* /	
	exp 'n'	$\{ \$\$ = -\$1;$	};

Infix Calculator

```
%{
#define YYSTYPE double
#include <math.h>
#include <stdio.h>
int vylex (void);
void vverror (char const *);
%}
/* Bison Declarations */
%token NUM
"left '-' '+' lower precedence
"left '*' '/' & higher
%left NEG /* negation--unary minus */
%right '^' /* exponentiation */
```


Infix Calculator (Continued)

, %%

Error Recovery

- Pop stack contents to expose a state where an error token is acceptable
- Shift error token onto the stack
- Discard input until reaching a token that can follow this error token

Error recovery strategies are never perfect — some times they lead to cascading errors, unless carefully designed.

Left Versus Right Recursion

expseq1: exp | expseq1 ', ' exp; is a left-recursive definition of a sequence of exp's, whereas expseq1: exp | exp ', ' expseq1; is a right-recursive definition

- Left-recursive definitions are a no-no for LL parsing, but yes-yes for LR parsing
- Right-recursive definition is bad for LR parsing as it needs to shift ithe entire list on stack before any reduction increases stack usage