
Parsing

A.k.a. Syntax Analysis

Recognize sentences in a language.

Discover the structure of a document/program.

Construct (implicitly or explicitly) a tree (called as a parse tree) to represent the

structure.

The above tree is used later to guide the translation.

1 / 83

Grammars

The syntactic structure of a language is defined using grammars.

Grammars (like regular expressions) specify a set of strings over an alphabet.

E�icient recognizers (like DFA) can be constructed to e�iciently determine whether

a string is in the language.

Language hierarchy:

Finite Languages (FL)

Enumeration

Regular Languages (RL ⊃ FL)

Regular Expressions

Context-free Languages (CFL ⊃ RL)

Context-free Grammars

2 / 83

Regular Languages

Languages represented

by regular expressions

≡
Languages

recognized by finite

automata

Examples:

√
{a, b, c}

√
{ε, a, b, aa, ab, ba, bb, . . .}

√
{(ab)n | n ≥ 0}

× {anbn | n ≥ 0}
3 / 83

Grammars

Notation where recursion is explicit. Examples

{ε,a,b,aa,ab,ba,bb, . . .}:
E −→ a

E −→ b

S −→ ε

S −→ ES

Notational shorthand:

E −→ a | b
S −→ ε | ES

{anbn | n ≥ 0} :

S −→ ε

S −→ aSb

{w | no. of a’s in w = no. of b’s in w}
4 / 83

Context-free Grammars

• Terminal Symbols: Tokens

• Nonterminal Symbols: set of strings made up of tokens

• Productions: Rules for constructing the set of strings associated with non-terminal

symbols.

Example: Stmt −→ while Expr do Stmt

Start symbol: nonterminal symbol that represents the set of all strings in the

language.

5 / 83

Example

E −→ E + E

E −→ E − E

E −→ E ∗ E

E −→ E / E

E −→ (E)

E −→ id

L(E) = {id, id + id, id− id, . . . , id + (id ∗ id)− id, . . .}

6 / 83

Context-free Grammars

Production: rule with non-terminal symbol on le� hand side, and a (possibly empty) sequence

of terminal or non-terminal symbols on the right-hand side.

Notations:

• Terminals: lower case le�ers, digits, punctuation

• Nonterminals: Upper case le�ers

• Arbitrary Terminals/Nonterminals: X ,Y ,Z

• Strings of Terminals: u, v,w

• Strings of Terminals/Nonterminals: α, β, γ

• Start Symbol: S

7 / 83

Context-Free Vs Other Types of Grammars

Context-free grammar (CFG): Productions of the form NT −→ [NT |T]∗

Context-sensitive grammar (CSG): Productions of the form

[t|NT] ∗ NT [t|NT]∗ −→ [t|NT]∗

Unrestricted grammar: Productions of the form [t|NT]∗ −→ [t|NT]∗

8 / 83

Examples of Non-Context-Free Languages

Checking that variables are declared before use. If we simplify and abstract the

problem, we see that it amounts to recognizing strings of the form wsw

Checking whether the number of actual and formal parameters match. Abstracts to

recognizing strings of the form anbmcndm

In both cases, the rules are not enforced in grammar but deferred to type-checking

phase

Note: Strings of the form wswR
and anbncmdm

can be described by a CFG

9 / 83

What types of Grammars Describe These Languages?

Strings of 0’s and 1’s of form xx

Strings of 0’s and 1’s in which 011 doesn’t occur

Strings of 0’s and 1’s in which each 0 is immediately followed by a 1

Strings of 0’s and 1’s with ithe equal number of 0’s and 1’s.

10 / 83

Language Generated by Grammars, Equivalence of

Grammars

How to show that a grammar G generates a languageM? Show that

∀s ∈M, show that s ∈ L(G)

∀s ∈ L(G), show that s ∈M

How to establish that two grammars G1 and G2 are equivalent?

Show that L(G1) = L(G2)

11 / 83

Grammar Examples

S −→ 0S1S|1S0S|ε

What is the language generated by this grammar?

12 / 83

Grammar Examples

S −→ 0A|1B|ε

A −→ 0AA|1S

B −→ 1BB|0S

What is the language generated by this grammar?

13 / 83

The Two Sides of Grammars

Specify a set of strings in a language.

Recognize strings in a given language:

Is a given string x in the language?

Yes, if we can construct a derivation for x

Example: Is id + id ∈ L(E)?

id + id ⇐= E + id

⇐= E + E

⇐= E

14 / 83

Derivations

Grammar:

E −→ E + E

E −→ id

E derives id + id: E =⇒ E + E

=⇒ E + id

=⇒ id + id

αAβ =⇒ αγβ i� A −→ γ is a production in the grammar.

α
∗

=⇒ β if α derives β in zero or more steps.

Example: E ∗
=⇒ id + id

• Sentence: A sequence of terminal symbols w such that S +
=⇒ w (where S is the start symbol)

• Sentential Form: A sequence of terminal/nonterminal symbols α such that S ∗
=⇒ α

15 / 83

R

R

R

R

R

Derivations

• Rightmost derivation: Rightmost non-terminal is replaced first:

E =⇒ E + E

=⇒ E + id

=⇒ id + id

Wri�en as E ∗
=⇒rm id + id

• Le�most derivation: Le�most non-terminal is replaced first:

E =⇒ E + E

=⇒ id + E

=⇒ id + id

Wri�en as E ∗
=⇒lm id + id

16 / 83

R

R

Parse Trees

Graphical Representation of Derivations

E =⇒ E + E

=⇒ id + E

=⇒ id + id

id id

+E E

E

E =⇒ E + E

=⇒ E + id

=⇒ id + id

A Parse Tree succinctly captures the structure of a sentence.

17 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Ambiguity

A Grammar is ambiguous if there are multiple parse trees for the same sentence.

Example: id + id ∗ id

id

+E E

E

E E

id id

* id

E

E

E

E E

id id

+

*

18 / 83

Disambiguition

Express Preference for one parse tree over others.
Example: id + id ∗ id

The usual precedence of ∗ over + means:

id

+E E

E

E E

id id

* id

E

E

E

E E

id id

+

*

Preferred
19 / 83

R

R

R

R

R

Parsing

Construct a parse tree for a given string.

S −→ (S)S

S −→ a

S −→ ε

(a)a (a)(a)

S

S S

a a

()

S

S S()

S

()S

a

a ε

20 / 83

A Procedure for Parsing

Grammar: S −→ a

procedure parse_S() {

switch (input_token) {

case TOKEN_a:

consume(TOKEN_a);

return;

default:

/* Parse Error */

}

}

21 / 83

R

Predictive Parsing

Grammar:

S −→ a

S −→ ε

procedure parse_S() {

switch (input_token) {

case TOKEN_a: /* Production 1 */

consume(TOKEN_a);

return;

case TOKEN_EOF : /* Production 2 */

return;

default:

/* Parse Error */

}

}

22 / 83

Predictive Parsing (contd.)

Grammar:

S −→ (S)S

S −→ a

S −→ ε

procedure parse_S() {

switch (input_token) {

case TOKEN_OPEN_PAREN : /* Production 1 */

consume(TOKEN_OPEN_PAREN);

parse_S();

consume(TOKEN_CLOSE_PAREN);

parse_S();

return;

23 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

Predictive Parsing (contd.)

Grammar:

S −→ (S)S

S −→ a

S −→ ε

case TOKEN_a: /* Production 2 */

consume(TOKEN_a);

return;

case TOKEN_CLOSE_PAREN :

case TOKEN_EOF : /* Production 3 */

return;

default:

/* Parse Error */

24 / 83

Predictive Parsing: Restrictions

Grammar cannot be le�-recursive
Example: E −→ E + E | a

procedure parse_E() {

switch (input_token) {

case TOKEN_a: /* Production 1 */

parse_E();

consume(TOKEN_PLUS);

parse_E();

return;

case TOKEN_a: /* Production 2 */

consume(TOKEN_a);

return;

}

}
25 / 83

Removing Le� Recursion

A −→ A a

A −→ b

L(A) = {b, ba, baa, baaa, baaaa, . . .}

A −→ bA′

A′ −→ aA′

A′ −→ ε

26 / 83

Removing Le� Recursion

More generally,

A −→ Aα1| · · · |Aαm

A −→ β1| · · · |βn

Can be transformed into

A −→ β1A′| · · · |βnA′

A′ −→ α1A′| · · · |αmA′|ε

27 / 83

Removing Le� Recursion: An Example

E −→ E + E

E −→ id

⇓

E −→ id E ′

E ′ −→ + E E ′

E ′ −→ ε

28 / 83

Predictive Parsing: Restrictions

May not be able to choose a unique production

S −→ a B d

B −→ b

B −→ bc

Le�-factoring can help:

S −→ a B d

B −→ bC

C −→ c|ε
29 / 83

R

Predictive Parsing: Restrictions

In general, though, we may need a backtracking parser:

Recursive Descent Parsing

S −→ a B d

B −→ b

B −→ bc

30 / 83

Recursive Descent Parsing

Grammar:

S −→ a B d

B −→ b

B −→ bc

procedure parse_B() {

switch (input_token) {

case TOKEN_b: /* Production 2 */

consume(TOKEN_b);

return;

case TOKEN_b: /* Production 3 */

consume(TOKEN_b);

consume(TOKEN_c);

return;

}}

31 / 83

Non-recursive Parsing

Instead of recursion,

use an explicit stack along with the parsing table.

Data objects:

Parsing Table: M(A, a), a two-dimensional array, dimensions indexed by

nonterminal symbols (A) and terminal symbols (a).

A Stack of terminal/nonterminal symbols

Input stream of tokens

The above data structures manipulated using a table-driven parsing program.

32 / 83

Table-driven Parsing

Grammar:

A −→ a

B −→ b

S −→ A S B

S −→ ε

Parsing Table:

Input Symbol

Nonterminal a b EOF

S S −→ A S B S −→ ε S −→ ε

A A −→ a

B B −→ b

33 / 83

R

Table-driven Parsing Algorithm

stack initialized to EOF .

while (stack is not empty) {

X = top(stack);

if (X is a terminal symbol)

consume(X);

else /* X is a nonterminal */

if (M[X , input_token] = X −→ Y1,Y2, . . . ,Yk) {

pop(stack);

for i = k downto 1 do

push(stack, Yi);

}

else /* Syntax Error */

}

34 / 83

FIRST and FOLLOW

Grammar: S −→ (S)S | a | ε

FIRST(X) = First character of any string that can be derived from X

FIRST(S) = {(,a, ε}.

FOLLOW(A) = First character that, in any derivation of a string in the language,

appears immediately a�er A.

FOLLOW(S) = {), EOF}

35 / 83

FIRST and FOLLOW (contd.)

a

S

C

b

a ∈ FIRST(C)

b ∈ FOLLOW(C)

36 / 83

FIRST and FOLLOW

FIRST (X): First terminal in some α such that X ∗
=⇒ α.

FOLLOW (A): First terminal in some β such that S ∗
=⇒ αAβ.

Grammar:

A −→ a

B −→ b

S −→ A S B

S −→ ε

First(S) = { a, ε }

First(A) = { a }

First(B) = { b }

Follow(S) = { b, EOF }

Follow(A) = { a, b }

Follow(B) = { b, EOF }

37 / 83

R

R

Definition of FIRST

Grammar:

A −→ a

B −→ b

S −→ A S B

S −→ ε

FIRST (α) is the smallest set such that

α = Property of FIRST (α)

a, a terminal a ∈ FIRST (α)

A, a nonterminal

A −→ ε ∈ G =⇒ ε ∈ FIRST (α)

A −→ β ∈ G, β 6= ε =⇒ FIRST (β) ⊆ FIRST (α)
X1X2 · · ·Xk ,

a string of

terminals and

non-terminals

FIRST (X1)− {ε} ⊆ FIRST (α)

FIRST (Xi) ⊆ FIRST (α) if ∀j < i ε ∈ FIRST (Xj)

ε ∈ FIRST (α) if ∀j < k ε ∈ FIRST (Xj)

38 / 83

Definition of FOLLOW

Grammar:

A −→ a

B −→ b

S −→ A S B

S −→ ε

FOLLOW (A) is the smallest set such that

A Property of FOLLOW(A)

= S, the start symbol

EOF ∈ FOLLOW(S)

Book notation: $ ∈ FOLLOW(S)

B −→ αAβ ∈ G FIRST (β)− {ε} ⊆ FOLLOW(A)

B −→ αA, or

B −→ αAβ, ε ∈ FIRST (β)
FOLLOW(B) ⊆ FOLLOW(A)

39 / 83

A Procedure to Construct Parsing Tables

procedure table_construct(G) {

for each A −→ α ∈ G {

for each a ∈ FIRST (α) such that a 6= ε

add A −→ α to M[A, a];

if ε ∈ FIRST (α)

for each b ∈ FOLLOW (A)

add A −→ α to M[A, b];

}}

40 / 83

LL(1) Grammars

Grammars for which the parsing table constructed earlier has no multiple entries.

E −→ id E ′

E ′ −→ + E E ′

E ′ −→ ε

Input Symbol

Nonterminal id + EOF

E E −→ id E ′

E ′ E ′ −→ + E E ′ E ′ −→ ε

41 / 83

Parsing with LL(1) Grammars

Input Symbol

Nonterminal id + EOF

E E −→ id E ′

E ′ E ′ −→ + E E ′ E ′ −→ ε

$E id + id$ E =⇒ idE ′

$E ′id id + id$

$E ′ + id$ =⇒ id+EE ′

$E ′E+ + id$

$E ′E id$ =⇒ id+idE ′E ′

$E ′E ′id id$

$E ′E ′ $ =⇒ id+idE ′

$E ′ $ =⇒ id+id

$ $

42 / 83

LL(1) Derivations

Le� to Right Scan of input

Le�most Derivation

(1) look ahead 1 token at each step

Alternative characterization of LL(1) Grammars:

Whenever A −→ α | β ∈ G

1. FIRST (α) ∩ FIRST (β) = { }, and

2. if α
∗

=⇒ ε then FIRST (β) ∩ FOLLOW (A) = { }.

Corollary: No Ambiguous Grammar is LL(1).

43 / 83

Le�most and Rightmost Derivations

E −→ E+T

E −→ T

T −→ id

Derivations for id + id:

E =⇒ E+T

=⇒ T+T

=⇒ id+T

=⇒ id+id

E =⇒ E+T

=⇒ E+id

=⇒ T+id

=⇒ id+id

LEFTMOST RIGHTMOST

44 / 83

Bo�om-up Parsing

Given a stream of tokens w , reduce it to the start symbol.

E −→ E+T

E −→ T

T −→ id

Parse input stream: id + id:

id + id

T + id

E + id

E + T

E

Reduction ≡ Derivation−1.

45 / 83

R

R

R

R

R

Handles

Informally, a “handle” of a sentential form is a substring that matches the right side of

a production, and

whose reduction to the non-terminal on the le� hand side of the production

represents one step along the reverse rightmost derivation.

46 / 83

R

R

R

R

R

R

R

R

R

R

Handles

A structure that furnishes a means to perform reductions.

E −→ E+T

E −→ T

T −→ id

Parse input stream: id + id:

id + id

T + id

E + id

E + T

E

47 / 83

R

R

R

R

R

R

R

R

Handles

Handles are substrings of sentential forms:

1. A substring that matches the right hand side of a production

2. Reduction using that rule can lead to the start symbol

E =⇒ E + T

=⇒ E + id

=⇒ T + id

=⇒ id + id

Handle Pruning: replace handle by corresponding LHS.

48 / 83

R

R

R

R

R

R

R

R

Shi�-Reduce Parsing

Bo�om-up parsing.

• Shi�: Construct le�most handle on top of stack

• Reduce: Identify handle and replace by corresponding RHS

• Accept: Continue until string is reduced to start symbol and input token stream is

empty

• Error: Signal parse error if no handle is found.

49 / 83

R

R

R

R

R

R

Implementing Shi�-Reduce Parsers

• Stack to hold grammar symbols (corresponding to tokens seen thus far).

• Input stream of yet-to-be-seen tokens.

• Handles appear on top of stack.

Stack is initially empty (denoted by $).

Parse is successful if stack contains only the start symbol when the input stream

ends.

50 / 83

R

R

R

R

R

R

R

Shi�-Reduce Parsing: An Example

S −→ aABe

A −→ Abc|b
B −→ d

To parse: a b b c d e

51 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Shi�-Reduce Parsing: An Example

E −→ E+T

E −→ T

T −→ id

Stack Input Stream Action

$ id + id $ shi�

$ id + id $ reduce by T −→ id

$ T + id $ reduce by E −→ T

$ E + id $ shi�

$ E + id $ shi�

$ E + id $ reduce by T −→ id

$ E + T $ reduce by E −→ E+T

$ E $ ACCEPT
52 / 83

R

R

R

R

R

R

R

More on Handles

Handle: Let S =⇒∗rm αAw =⇒rm αβw .

Then A −→ β is a handle for αβw at the position imeediately following α.

Notes:

For unambiguous grammars, every right-sentential form has a unique handle.

In shi�-reduce parsing, handles always appear on top of stack, i.e., αβ is in the stack (with β

at top), and w is unread input.

53 / 83

R

R

R

R

R

R

R

R

Identification of Handles and Relationship to Conflicts

Case 1: With αβ on the stack, don’t know if we have a handle on top of the stack, or we

need to shi� some more input to get βx which is a handle.

Shi�-reduce conflict

Example: if-then-else

Case 2: With αβ1β2 on the stack, don’t know if A −→ β2 is the handle, or B −→ β1β2 is

the handle

Reduce-reduce conflict

Example: E −→ E − E| − E|id

54 / 83

R

R

R

R

R

R

R

R

R

R

R

Viable Prefix

Prefix of a right-sentential form that does not continue beyond the rightmost handle.

With αβw example of the previous slides, a viable prefix is something of the form αβ1

where β = β1β2

55 / 83

R

R

R

R

R

R

LR Parsing

Stack contents as s0X1s1X2 · · ·Xmsm

Its actions are driven by two tables, action and goto

Parser Configuration: (s0X1s1X2 · · ·Xmsm︸ ︷︷ ︸
stack

, aiai+1 · · · an$︸ ︷︷ ︸
unconsumed input

)

action[sm, ai] can be:

shi� s: new config is (s0X1s1X2 · · ·Xmsmais, ai+1 · · · an$)

reduce A −→ β: Let |β| = r , goto[sm−r ,A] = s: new config is

(s0X1s1X2 · · ·Xm−rsm−rAs, aiai+1 · · · an$)

error: perform recovery actions

accept: Done parsing

56 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

LR Parsing

action and goto depend only on the state at the top of the stack, not on all of the stack

contents

The si states compactly summarize the “relevant” stack content that is at the top of the

stack.

You can think of goto as the action taken by the parser on “consuming” (and shi�ing)

nonterminals

similar to the shi� action in the action table, except that the transition is on a nonterminal

rather than a terminal

The action and goto tables define the transitions of an FSA that accepts RHS of productions!

57 / 83

R

R

R

R

R

Example of LR Parsing Table and its Use

See Text book Algorithm 4.7: (follows directly from description of LR parsing actions 2 slides

earlier)

See expression grammar (Example 4.33), its associated parsing table in Fig 4.31, and the use

of the table to parse id ∗ id + id (Fig 4.32)

58 / 83

LR Versus LL Parsing

Intuitively:

LL parser needs to guess the production based on the first symbol (or first few symbols) on

the RHS of a production

LR parser needs to guess the production a�er seeing all of the RHS

Both types of parsers can use next k input symbols as look-ahead symbols (LL(k) and LR(k)

parsers)

Implication: LL(k) ⊂ LR(k)

59 / 83

R

How to Construct LR Parsing Table?

Key idea: Construct an FSA to recognize RHS of productions

States of FSA remember which parts of RHS have been seen already.

We use “ · ” to separate seen and unseen parts of RHS

LR(0) item: A production with “ · ” somewhere on the RHS. Intuitively,

. grammar symbols before the “ · ” are on stack;

. grammar symbols a�er the “ · ” represent symbols in the input stream.

I0:

E ′ −→ · E
E −→ · E+T

E −→ · T
T −→ · id

60 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

How to Construct LR Parsing Table?

If there is no way to distinguish between two di�erent productions at some point during

parsing, then the same state should represent both.

Closure operation: If a state s includes LR(0) item A −→ α · Bβ, and there is a production

B −→ γ, then s should include B −→ · γ
goto operation: For a set I of items, goto[I,X] is the closure of all items A −→ αX · β for

each A −→ α · Xβ in I

Item set: A set of items that is closed under the closure operation, corresponds to a state of the

parser.

61 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Constructing Simple LR (SLR) Parsing Tables

Step 1: Construct LR(0) items (Item set construction)

Step 2: Construct a DFA for recognizing items

Step 3: Define action and goto based on the DFA

62 / 83

R

R

Item Set Construction

1. Augment the grammar with a rule S′ −→ S, and make S′ the new start symbol

2. Start with initial set I0 corresponding to the item S′ −→ · S

3. apply closure operation on I0.

4. For each item set I and grammar symbol X , add goto[I,X] to the set of items

5. Repeat previous step until no new item sets are generated.

63 / 83

R

R

R

R

R

R

R

Item Set Construction

E ′ −→ E E −→ E + T | T T −→ T ∗ F | F F −→ (E) | id

I0 : E ′ −→ · E

I1 : E ′ −→ E ·

I2 : E −→ T ·

I3 : T −→ F ·

64 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Item Set Construction (Contd.)

E ′ −→ E E −→ E + T | T T −→ T ∗ F | F F −→ (E) | id

I4 : F −→ (· E)

I5 : F −→ id ·

I6 : E −→ E + · T

I7 : T −→ T ∗ · F

65 / 83

R

R

R

R

R

R

R

R

R

Item Set Construction (Contd.)

E ′ −→ E E −→ E + T | T T −→ T ∗ F | F F −→ (E) | id

I8 : F −→ (E ·)

I9 : E −→ E + T ·

I10 : T −→ T ∗ F ·

I11 : F −→ (E) ·

66 / 83

Item Sets for the Example

67 / 83

R

R

R

R

R

R

R

R

R

SLR(1) Parse Table for the Example Grammar

68 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Defining action and goto tables

Let I0, I1, . . . , In be the item sets constructed before

Define action as follows

If A −→ α · aβ is in Ii and there is a DFA transition to Ij from Ii on symbol a then

action[i, a] = “shi� j”

If A −→ α · is in Ii then action[i, a] = “reduce A −→ α” for every a ∈ FOLLOW (A)

If S′ −→ S · is in Ii then action[Ii, $] = “accept”

If any conflicts arise in the above procedure, then the grammar is not SLR(1).

goto transition for LR parsing defined directly from the DFA transitions.

All undefined entries in the table are filled with “error”

69 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Defining action and goto tables

Let I0, I1, . . . , In be the item sets constructed before

Define action as follows

If A −→ α · aβ is in Ii and there is a DFA transition to Ij from Ii on symbol a then

action[i, a] = “shi� j”

If A −→ α · is in Ii then action[i, a] = “reduce A −→ α” for every a ∈ FOLLOW (A)

If S′ −→ S · is in Ii then action[Ii, $] = “accept”

If any conflicts arise in the above procedure, then the grammar is not SLR(1).

goto transition for LR parsing defined directly from the DFA transitions.

All undefined entries in the table are filled with “error”

69 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Deficiencies of SLR Parsing

SLR(1) treats all occurrences of a RHS on stack as identical.

Only a few of these reductions may lead to a successful parse.

Example:

S −→ AaAb

S −→ BbBa

A −→ ε

B −→ ε

I0 = {[S′ → · S], [S → · AaAb], [S → · BibBa], [A→ ·], [B→ ·]}.

Since FOLLOW (A) = FOLLOW (B), we have reduce/reduce conflict in state 0.

70 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

LR(1) Item Sets

Construct LR(1) items of the form A −→ α · β, a, which means:

The production A −→ αβ can be applied when the next token on input stream is a.

S −→ AaAb

S −→ BbBa

A −→ ε

B −→ ε

An example LR(1) item set:

I0 = {[S′ → · S, $], [S → · AaAb, $], [S → · BbBa, $],

[A→ · , a], [B→ · , b]}.

71 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

LR(1) and LALR(1) Parsing

LR(1) parsing: Parse tables built using LR(1) item sets.

LALR(1) parsing: Look Ahead LR(1)

Merge LR(1) item sets; then build parsing table.

Typically, LALR(1) parsing tables are much smaller than LR(1) parsing table.

72 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

YACC

Yet Another Compiler Compiler:

LALR(1) parser generator.

Grammar rules are wri�en in a specification (.y) file, analogous to the regular definitions in

a lex specification file.

Yacc translates the specifications into a parsing function yyparse().

spec.y
yacc
−−−→ spec.tab.c

yyparse() calls yylex() whenever input tokens need to be consumed.

bison: GNU variant of yacc.

73 / 83

R

R

R

R

R

R

Using Yacc

%{

... C headers (#include)

%}

... Yacc declarations:

%token ...

%union{...}

precedences

%%

... Grammar rules with actions:

Expr: Expr TOK_PLUS Expr

| Expr TOK_MINUS Expr

;

%%

... C support functions
74 / 83

R

R

R

YACC

Yet Another Compiler Compiler:

LALR(1) parser generator.

Grammar rules are wri�en in a specification (.y) file, analogous to the regular definitions in

a lex specification file.

Yacc translates the specifications into a parsing function yyparse().

spec.y
yacc
−−−→ spec.tab.c

yyparse() calls yylex() whenever input tokens need to be consumed.

bison: GNU variant of yacc.

75 / 83

Using Yacc

%{

... C headers (#include)

%}

... Yacc declarations:

%token ...

%union{...}

precedences

%%

... Grammar rules with actions:

Expr: Expr TOK_PLUS Expr

| Expr TOK_MINUS Expr

;

%%

... C support functions
76 / 83

Conflicts and Resolution

Operator precedence works well for resolving conflicts that involve operators

But use it with care – only when they make sense, not for the sole purpose of removing

conflict reports

Shi�-reduce conflicts: Bison favors shi�

Except for the dangling-else problem, this strategy does not ever seem to work, so don’t

rely on it.

77 / 83

R

R

R

R

R

Reduce-Reduce Conflicts

sequence: /* empty */

{ printf ("empty sequence\n"); }

| maybeword

| sequence word

{ printf ("added word %s\n", $2); };

maybeword: /* empty */

{ printf ("empty maybeword\n"); }

| word

{ printf ("single word %s\n", $1); };

In general, grammar needs to be rewri�en to eliminate conflicts.

78 / 83

R

R

R

R

R

R

R

R

Sample Bison File: Postfix Calculator

input: /* empty */
| input line

;
line: ’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }
;
exp: NUM { $$ = $1; }

| exp exp ’+’ { $$ = $1 + $2; }
| exp exp ’-’ { $$ = $1 - $2; }
| exp exp ’*’ { $$ = $1 * $2; }
| exp exp ’/’ { $$ = $1 / $2; }
/* Exponentiation */

| exp exp ’^’ { $$ = pow ($1, $2); }
/* Unary minus */

| exp ’n’ { $$ = -$1; };
%%

79 / 83

R

R

R

R

Infix Calculator

%{
#define YYSTYPE double
#include <math.h>
#include <stdio.h>
int yylex (void);
void yyerror (char const *);
%}
/* Bison Declarations */
%token NUM
%left ’-’ ’+’
%left ’*’ ’/’
%left NEG /* negation--unary minus */
%right ’^’ /* exponentiation */

80 / 83

R

R

R

R

R

R

R

R

R

R

R

R

Infix Calculator (Continued)

%% /* The grammar follows. */
input: /* empty */

| input line
;
line: ’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }
;
exp: NUM { $$ = $1; }

| exp ’+’ exp { $$ = $1 + $3; }
| exp ’-’ exp { $$ = $1 - $3; }
| exp ’*’ exp { $$ = $1 * $3; }
| exp ’/’ exp { $$ = $1 / $3; }
| ’-’ exp %prec NEG { $$ = -$2; }
| exp ’^’ exp { $$ = pow ($1, $3); }
| ’(’ exp ’)’ { $$ = $2; }

;
%%

81 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Error Recovery

line: ’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }

| error ’\n’ { yyerrok; };

Pop stack contents to expose a state where an error token is acceptable

Shi� error token onto the stack

Discard input until reaching a token that can follow this error token

Error recovery strategies are never perfect — some times they lead to cascading errors, unless

carefully designed.

82 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Le� Versus Right Recursion

expseq1: exp | expseq1 ’,’ exp;

is a le�-recursive definition of a sequence of exp’s, whereas

expseq1: exp | exp ’,’ expseq1;

is a right-recursive definition

Le�-recursive definitions are a no-no for LL parsing, but yes-yes for LR parsing

Right-recursive definition is bad for LR parsing as it needs to shi� ithe entire list on stack

before any reduction — increases stack usage

83 / 83

R

R

R

R

R

R

R

