Parsing

A.k.a. Syntax Analysis

- Recognize sentences in a language.
- Discover the structure of a document/program.
- Construct (implicitly or explicitly) a tree (called as a parse tree) to represent the structure.
- The above tree is used later to guide the translation.

Grammars

The syntactic structure of a language is defined using grammars.

- Grammars (like regular expressions) specify a set of strings over an alphabet.
- Efficient recognizers (like DFA) can be constructed to efficiently determine whether a string is in the language.
- Language hierarchy:
- Finite Languages (FL)

Enumeration

- Regular Languages (RL $\supset \mathrm{FL})$

Regular Expressions

- Context-free Languages (CFL $\supset \mathrm{RL}$)

Context-free Grammars

Regular Languages

Languages represented by regular expressions

Languages
\equiv recognized by finite automata

Examples:

$$
\begin{aligned}
& \sqrt{ }\{a, b, c\} \\
& \sqrt{ }\{\epsilon, a, b, a a, a b, b a, b b, \ldots\} \\
& \sqrt{ }\left\{(a b)^{n} \mid n \geq 0\right\} \\
& \times\left\{a^{n} b^{n} \mid n \geq 0\right\}
\end{aligned}
$$

Grammars

Notation where recursion is explicit. Examples - $\{\epsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \ldots\}$:

$$
\begin{aligned}
& E \longrightarrow \mathrm{a} \\
& E \longrightarrow \mathrm{~b} \\
& S \longrightarrow \epsilon \\
& S \longrightarrow E S
\end{aligned}
$$

Notational shorthand:

$$
\begin{aligned}
& E \longrightarrow \mathrm{a} \mid \mathrm{b} \\
& S \longrightarrow \epsilon \mid E S
\end{aligned}
$$

- $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 0\right\}$:

$$
\begin{array}{lll}
S & \longrightarrow \epsilon \\
S & \longrightarrow \mathrm{a} S \mathrm{~b}
\end{array}
$$

- $\{w \mid$ no. of a's in $w=n o$. of b's in $w\}$

Context-free Grammars

- Terminal Symbols: Tokens
- Nonterminal Symbols: set of strings made up of tokens
- Productions: Rules for constructing the set of strings associated with non-terminal symbols.

Example: Stmt \longrightarrow while Expr do Stmt
Start symbol: nonterminal symbol that represents the set of all strings in the language.

Example

$$
\begin{aligned}
& E \longrightarrow E+E \\
& E \longrightarrow E-E \\
& E \longrightarrow E * E \\
& E \longrightarrow E / E \\
& E \longrightarrow(E) \\
& E \longrightarrow \text { id }
\end{aligned}
$$

$$
\mathcal{L}(E)=\{\mathrm{id}, \mathrm{id}+\mathrm{id}, \mathrm{id}-\mathrm{id}, \ldots, \mathrm{id}+(\mathrm{id} * \mathrm{id})-\mathrm{id}, \ldots\}
$$

Context-free Grammars

Production: rule with non-terminal symbol on left hand side, and a (possibly empty) sequence of terminal or non-terminal symbols on the right-hand side.
Notations:

- Terminals: lower case letters, digits, punctuation
- Nonterminals: Upper case letters
- Arbitrary Terminals/Nonterminals: X, Y, Z
- Strings of Terminals: $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$
- Strings of Terminals/Nonterminals: α, β, γ
- Start Symbol: S

Context-Free Vs Other Types of Grammars

- Context-free grammar (CFG): Productions of the form NT $\longrightarrow[N T \mid T] *$
- Context-sensitive grammar (CSG): Productions of the form $[t \mid N T] * N T[t \mid N T] * \longrightarrow[t \mid N T] *$
- Unrestricted grammar: Productions of the form $[t \mid N T] * \longrightarrow[t \mid N T] *$

Examples of Non-Context-Free Languages

- Checking that variables are declared before use. If we simplify and abstract the problem, we see that it amounts to recognizing strings of the form wsw
- Checking whether the number of actual and formal parameters match. Abstracts to recognizing strings of the form $a^{n} b^{m} c^{n} d^{m}$
- In both cases, the rules are not enforced in grammar but deferred to type-checking phase
- Note: Strings of the form $w s w^{R}$ and $a^{n} b^{n} c^{m} d^{m}$ can be described by a CFG

What types of Grammars Describe These Languages?

- Strings of 0 's and 1's of form $x x$
- Strings of 0's and 1's in which 011 doesn't occur
- Strings of 0's and 1's in which each 0 is immediately followed by a 1
- Strings of 0's and 1's with ithe equal number of 0's and 1's.

Language Generated by Grammars, Equivalence of

Grammars

- How to show that a grammar G generates a language \mathcal{M} ? Show that
- $\forall s \in \mathcal{M}$, show that $s \in \mathcal{L}(G)$
- $\forall s \in \mathcal{L}(G)$, show that $s \in \mathcal{M}$
- How to establish that two grammars G_{1} and G_{2} are equivalent?

Show that $\mathcal{L}\left(G_{1}\right)=\mathcal{L}\left(G_{2}\right)$

Grammar Examples

$$
S \longrightarrow 0 S 1 S|1 S 0 S| \epsilon
$$

What is the language generated by this grammar?

Grammar Examples

$$
\begin{aligned}
& S \longrightarrow 0 A|1 B| \epsilon \\
& A \longrightarrow 0 A A \mid 1 S \\
& B \longrightarrow 1 B B \mid 0 S
\end{aligned}
$$

What is the language generated by this grammar?

The Two Sides of Grammars

Specify a set of strings in a language.
Recognize strings in a given language:

- Is a given string x in the language?

Yes, if we can construct a derivation for x

- Example: Is id $+\mathrm{id} \in \mathcal{L}(E)$?

$$
\begin{aligned}
\mathrm{id}+\mathrm{id} & \Longleftarrow E+\mathrm{id} \\
& \Longleftarrow E+E \\
& \Longleftarrow E
\end{aligned}
$$

Derivations

Grammar:	$\overparen{(E)} \longrightarrow$	$E+E$
	\longrightarrow	id

- $\alpha A \beta \Longrightarrow \alpha \gamma \beta$ iff $A \longrightarrow \gamma$ is a production in the grammar.
- $\alpha \xrightarrow{*} \beta$ if α derives β in zero or more steps.

Example: $E \xrightarrow{*} \mathrm{id}+\mathrm{id}$

- Sentence: A sequence of terminal symbols w such that $S \xlongequal{+} w$ (where S is the start symbol)
- Sentential Form: A sequence of terminal/nonterminal symbols α such that $S \stackrel{*}{\Longrightarrow} \alpha$

Derivations

- Rightmost derivation: Rightmost non-terminal is replaced first:

$$
\begin{aligned}
E & \Longrightarrow E+E \\
& \Longrightarrow E+\mathrm{id} \\
& \Longrightarrow \mathrm{id}+\mathrm{id}
\end{aligned}
$$

Written as $E \xlongequal{*} r m$ id +id

- Leftmost derivation: Leftmost non-terminal is replaced first:

$$
\begin{aligned}
E & \Longrightarrow E+E \\
& \Longrightarrow \mathrm{id}+E \\
& \Longrightarrow \mathrm{id}+\mathrm{id}
\end{aligned}
$$

Written as $E \stackrel{*}{\Longrightarrow} I m$ id +id

Parse Trees

$$
E \rightarrow i \alpha
$$

Graphical Representation of Derivations

Recursive descent \longrightarrow recursive,
Predictive parsing backtracks Ant/r

Ambiguity

A Grammar is ambiguous if there are multiple parse trees for the same sentence.

Example: id $+\mathrm{id} *$ id

Disambiguition

Express Preference for one parse tree over others.
Example: id $+\mathrm{id} *$ id
The usual precedence of $*$ over + means:

Parsing

Construct a parse tree for a given string.

$$
\begin{aligned}
& S \longrightarrow(S) S \\
& S \longrightarrow a \\
& S \longrightarrow \epsilon
\end{aligned}
$$

A Procedure for Parsing

Predictive Parsing

```
                                    Grammar: }
        S\longrightarrow\epsilon
procedure parse_S() {
    switch (input_token) {
        case TOKEN_a: /* Production 1 */
            consume(TOKEN_a);
            return;
            case TOKEN_EOF: /* Production 2 */
            return;
            default:
                /* Parse Error */
    }
}
```

Predictive Parsing (contd.)

parse_SC)
procedure parse_S() \{
parse-AC)
switch (input_token) \{
case TOKEN_OPEN_PAREN: /* Production 1 */
parse-BC) consume(TOKEN_OPEN_PAREN);
parse_S();
consume(TOKEN_CLOSE_PAREN); parse_S();
return;

Predictive Parsing (contd.)

	S \longrightarrow $(S) S$ Grammar: S $\longrightarrow a$ $\longrightarrow \epsilon$

case TOKEN_a: /* Production 2 */
consume(TOKEN_a); return;
case TOKEN_CLOSE_PAREN:
case TOKEN_EOF: /* Production 3 */
return;
default:
/* Parse Error */

Predictive Parsing: Restrictions

```
Grammar cannot be left-recursive
Example: E\longrightarrowE+E | a
procedure parse_E() {
    switch (input_token) {
        case TOKEN_a: /* Production 1 */
        parse_E();
        consume(TOKEN_PLUS);
        parse_E();
        return;
        case TOKEN_a: /* Production 2 */
        consume(TOKEN_a);
        return;
    }
}
```


Removing Left Recursion

$$
\begin{aligned}
& A \longrightarrow A a \\
& A \longrightarrow b \\
& \mathcal{L}(A)=\{b, \text { ba, baa, baaa, baaaa }, \ldots\} \\
& \hline A \longrightarrow b A^{\prime} \\
& A^{\prime} \longrightarrow a A^{\prime} \\
& A^{\prime} \longrightarrow \epsilon
\end{aligned}
$$

Removing Left Recursion

More generally,

$$
\begin{aligned}
A & \longrightarrow A \alpha_{1}|\cdots| A \alpha_{m} \\
A & \longrightarrow \beta_{1}|\cdots| \beta_{n}
\end{aligned}
$$

Can be transformed into

$$
\begin{aligned}
A & \longrightarrow \beta_{1} A^{\prime}|\cdots| \beta_{n} A^{\prime} \\
A^{\prime} & \longrightarrow \alpha_{1} A^{\prime}|\cdots| \alpha_{m} A^{\prime} \mid \epsilon
\end{aligned}
$$

Removing Left Recursion: An Example

$$
\begin{array}{rll}
E & \longrightarrow & E+E \\
E & \longrightarrow & \text { id } \\
& \Downarrow & \\
E & \longrightarrow & \text { id } E^{\prime} \\
E^{\prime} & \longrightarrow & +E E^{\prime} \\
E^{\prime} & \longrightarrow & \epsilon
\end{array}
$$

Predictive Parsing: Restrictions

May not be able to choose a unique production
$S \longrightarrow a B d$
$B \longrightarrow b$
$B \longrightarrow b c$
Left-factoring can help:

$$
\begin{aligned}
& S \longrightarrow a B d \\
& B \longrightarrow b C \\
& C \longrightarrow c \mid \epsilon
\end{aligned}
$$

Predictive Parsing: Restrictions

In general, though, we may need a backtracking parser:
Recursive Descent Parsing

$$
\begin{aligned}
& S \longrightarrow a B d \\
& B \longrightarrow b \\
& B \longrightarrow b c
\end{aligned}
$$

Recursive Descent Parsing

Grammar:$S \longrightarrow a B d$ $B \longrightarrow b$ $B \longrightarrow b c$
procedure parse_B() \{ switch (input_token) \{ case TOKEN_b: /* Production 2 */ consume(TOKEN_b); return; case TOKEN_b: /* Production 3 */ consume(TOKEN_b); consume(TOKEN_c); return;
\}

Non-recursive Parsing

Instead of recursion,
use an explicit stack along with the parsing table.
Data objects:

- Parsing Table: $M(A, a)$, a two-dimensional array, dimensions indexed by nonterminal symbols (A) and terminal symbols (a).
- A Stack of terminal/nonterminal symbols
- Input stream of tokens

The above data structures manipulated using a table-driven parsing program.

Table-driven Parsing

Grammar:

A	\longrightarrow	S
B	\longrightarrow	
B	$S \longrightarrow A S B$	

Parsing Table:

	InPut SYMboL		
	a	b	EOF
S	$S \longrightarrow A S B$	$S \longrightarrow \epsilon$	$S \longrightarrow \epsilon$
A	$A \longrightarrow a$		
B		$B \longrightarrow b$	

Table-driven Parsing Algorithm

```
stack initialized to EOF.
while (stack is not empty) {
    X = top(stack);
    if (X is a terminal symbol)
        consume( }X\mathrm{ );
    else /* X is a nonterminal */
    if (M[X, input_token] =X \longrightarrow Y , , Y , ,., Y Y ) {
        pop(stack);
        for i=k downto 1 do
            push(stack, Yi);
    }
    else /* Syntax Error */
}
```


FIRST and FOLLOW

Grammar: $S \longrightarrow(S) S|a| \epsilon$

- $\operatorname{FIRST}(X)=$ First character of any string that can be derived from X $\operatorname{FIRST}(S)=\{(, a, \epsilon\}$.
- $\operatorname{FOLLOW}(A)=$ First character that, in any derivation of a string in the language, appears immediately after A.
$\operatorname{FOLLOW}(S)=\{)$, EOF $\}$

FIRST and FOLLOW (contd.)

$$
\begin{gathered}
a \in \operatorname{FIRST}(C) \\
b \in \operatorname{FOLLOW}(C)
\end{gathered}
$$

FIRST and FOLLOW

$\operatorname{FIRST}(X)$:
$\operatorname{FOLLOW}(A)$:

First terminal in some α such that $X \stackrel{*}{\Longrightarrow} \alpha$.
First terminal in some β such that $S \stackrel{*}{\Longrightarrow} \alpha A \beta$.

$$
\begin{array}{llll}
\text { Grammar: } & A & \longrightarrow & \\
& B \longrightarrow b & \longrightarrow & \\
& & \\
& & \longrightarrow S B \\
\end{array}
$$

$$
\begin{aligned}
\operatorname{First}(S)=\{\mathrm{a}, \epsilon\} & \text { Follow }(S)=\{\mathrm{b}, \text { EOF }\} \\
\operatorname{First}(A)=\{\mathrm{a}\} & \text { Follow }(A)=\{\mathrm{a}, \mathrm{~b}\} \\
\operatorname{First}(B)=\{\mathrm{b}\} & \text { Follow }(B)=\{\mathrm{b}, \text { EOF }\}
\end{aligned}
$$

Definition of FIRST

Grammar: | A | \longrightarrow | a | S |
| :--- | :--- | :--- | :--- |
| B | \longrightarrow | b | $A S B$ |
| | $S \longrightarrow \epsilon$ | | |

$\operatorname{FIRST}(\alpha)$ is the smallest set such that

$\alpha=$	Property of $\operatorname{FIRST}(\alpha)$
a, a terminal	$a \in \operatorname{FIRST}(\alpha)$
A, a nonterminal	$A \longrightarrow \epsilon \in G \Longrightarrow \epsilon \in \operatorname{FIRST}(\alpha)$
	$A \longrightarrow \beta \in G, \beta \neq \epsilon \Longrightarrow \operatorname{FIRST}(\beta) \subseteq \operatorname{FIRST}(\alpha)$
$X_{1} X_{2} \cdots X_{k}$,	$\operatorname{FIRST}\left(X_{1}\right)-\{\epsilon\} \subseteq \operatorname{FIRST}(\alpha)$
a string of	$\operatorname{FIRST}\left(X_{i}\right) \subseteq \operatorname{FIRST}(\alpha)$ if $\forall j<i \quad \epsilon \in \operatorname{FIRST}\left(X_{j}\right)$
terminals and	$\epsilon \in \operatorname{FIRST}(\alpha)$ if $\forall j<k \quad \epsilon \in \operatorname{FIRST}\left(X_{j}\right)$
non-terminals	

Definition of FOLLOW

| Grammar: | A | \longrightarrow | a | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| B | \longrightarrow | b | | $\longrightarrow A S B$ |
| | | \longrightarrow | ϵ | |

$\operatorname{FOLLOW}(A)$ is the smallest set such that

A	Property of $\operatorname{FOLLOW}(A)$
$=S$, the start symbol	EOF $\in \operatorname{FOLLOW}(S)$
	Book notation: $\$ \in \operatorname{FOLLOW}(S)$
$B \longrightarrow \alpha A \beta \in G$	$\operatorname{FIRST}(\beta)-\{\epsilon\} \subseteq \operatorname{FOLLOW}(A)$
$B \longrightarrow \alpha A$, or	$\operatorname{FOLLOW}(B) \subseteq \operatorname{FOLLOW}(A)$
$B \longrightarrow \alpha A \beta, \epsilon \in \operatorname{FIRST}(\beta)$	

A Procedure to Construct Parsing Tables

procedure table_construct (G) \{
for each $A \longrightarrow \alpha \in G\{$
for each $a \in \operatorname{FIRST}(\alpha)$ such that $a \neq \epsilon$ add $A \longrightarrow \alpha$ to $M[A, a] ;$
if $\epsilon \in \operatorname{FIRST}(\alpha)$
for each $b \in \operatorname{FOLLOW}(A)$
add $A \longrightarrow \alpha$ to $M[A, b] ;$
\}\}

LL(1) Grammars

Grammars for which the parsing table constructed earlier has no multiple entries.

E	\longrightarrow id E^{\prime}	
E^{\prime}	$\longrightarrow+E E^{\prime}$	
E^{\prime}	\longrightarrow	ϵ

Nonterminal	Input SymboL		
	id	+	EOF
E	$E \longrightarrow$ id E^{\prime}		
E^{\prime}		$E^{\prime} \longrightarrow+E E^{\prime}$	$E^{\prime} \longrightarrow \epsilon$

Parsing with LL(1) Grammars

	Input Symbol		
Nonterminal	id	+	EOF
E	$E \longrightarrow$ id E^{\prime}		
E^{\prime}		$E^{\prime} \longrightarrow+E E^{\prime}$	$E^{\prime} \longrightarrow \epsilon$

$\$ E$	$\mathrm{id}+\mathrm{id} \$$	E	\Longrightarrow	$\mathrm{id} E^{\prime}$
$\$ E^{\prime} \mathrm{id}$	$\mathrm{id}+\mathrm{id} \$$			
$\$ E^{\prime}$	$+\mathrm{id} \$$	\Longrightarrow	$\mathrm{id}+E E^{\prime}$	
$\$ E^{\prime} E+$	$+\mathrm{id} \$$			
$\$ E^{\prime} E$	$\mathrm{id} \$$	\Longrightarrow	$\mathrm{id}+\mathrm{id} E^{\prime} E^{\prime}$	
$\$ E^{\prime} E^{\prime} \mathrm{id}$	$\mathrm{id} \$$			
$\$ E^{\prime} E^{\prime}$	$\$$	\Longrightarrow	$\mathrm{id}+\mathrm{id} E^{\prime}$	
$\$ E^{\prime}$	$\$$	\Longrightarrow	$\mathrm{id}+\mathrm{id}$	
$\$$	$\$$			

LL(1) Derivations

Left to Right Scan of input
Leftmost Derivation
(1) look ahead 1 token at each step

Alternative characterization of $\operatorname{LL}(1)$ Grammars:
Whenever $A \longrightarrow \alpha \mid \beta \in G$

1. $\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\{ \}$, and
2. if $\alpha \stackrel{*}{\Longrightarrow} \epsilon$ then $\operatorname{FIRST}(\beta) \cap \operatorname{FOLLOW}(A)=\{ \}$.

Corollary: No Ambiguous Grammar is $\operatorname{LL}(1)$.

Leftmost and Rightmost Derivations

E	\longrightarrow	$E+T$
E	\longrightarrow	T
T	\longrightarrow	id

Derivations for id +id:

E	$\Longrightarrow E+T$	E	\Longrightarrow
	$\Longrightarrow+T$		
	\Longrightarrow	$T+T$	
	\Longrightarrow	$E+\mathrm{id}$	
	\Longrightarrow	id $+T$	
	\Longrightarrow	$T+\mathrm{id}$	
	LEFTMOST + id		
		RIGHTMOST	

Bottom-up Parsing

Given a stream of tokens w, reduce it to the start symbol.

E	\longrightarrow	$E+T$
E	\longrightarrow	T
T	\longrightarrow	id

Parse input stream: id +id:

Reduction \equiv Derivation $^{-1}$.

Handles

Informally, a "handle" of a sentential form is a substring that matches the right side of a production, and
whose reduction to the non-terminal on the left hand side of the production represents one step along the reverse rightmost derivation.

Handles

A structure that furnishes a means to perform reductions.

E	\longrightarrow	$E+T$
E	\longrightarrow	T
T	\longrightarrow	id

Parse input stream: id +id:

Handles

Handles are substrings of sentential forms:

1. A substring that matches the right hand side of a production
2. Reduction using that rule can lead to the start symbol

$$
\begin{aligned}
E & \Longrightarrow E+T \\
& \Longrightarrow E+\mathrm{id} \\
& \Longrightarrow T+\mathrm{id} \\
& \Longrightarrow \mathrm{id}+\mathrm{id}
\end{aligned}
$$

Handle Pruning: replace handle by corresponding LHS.

Shift-Reduce Parsing

Bottom-up parsing.

- Shift: Construct leftmost handle on top of stack
- Reduce: Identify handle and replace by corresponding RHS
- Accept: Continue until string is reduced to start symbol and input token stream is empty
- Error: Signal parse error if no handle is found.

Implementing Shift-Reduce Parsers

- Stack to hold grammar symbols (corresponding to tokens seen thus far).
- Input stream of yet-to-be-seen tokens.

- Handles appear on top of stack.
- Stack is initially empty (denoted by \$).
- Parse is successful if stack contains only the start symbol when the input stream ends.

Shift-Reduce Parsing: An Example

$$
\begin{array}{r}
S \rightarrow a A B e \\
A \longrightarrow a \operatorname{Abc|b} \\
B \longrightarrow d
\end{array}
$$

To parse: $a b b c d e$

Shift-Reduce Parsing: An Example

E	\longrightarrow	$E+T$
E	\longrightarrow	T
T	\longrightarrow	id

Stack	Input Stream	Action
\$	(id) +id \$	shift
\$ id	+ id \$	reduce by $T \longrightarrow$ id
\$ T	+ id \$	reduce by $E \longrightarrow T$
\$ E	+ id \$	shift
\$ $E+$	id \$	shift
\$ $E+\mathrm{id}$	\$	reduce by $T \longrightarrow$ id
\$ $E+T$	\$	reduce by $E \longrightarrow E+T$
\$ E	\$	ACCEPT

More on Handles

Handle: Let $S \Longrightarrow_{r m}^{*} \alpha A w \Longrightarrow_{r m} \alpha \beta w$.
Then $A \longrightarrow \beta$ is a handle for $\alpha \beta w$ at the position imeediately following α.

Notes:

- For unambiguous grammars, every right-sentential form has a unique handle.
- In shift-reduce parsing, handles always appear on top of stack, i.e., $\alpha \beta$ is in the stack (with β at top), and w is unread input.

Identification of Handles and Relationship to Conflicts

Case 1: With $\alpha \beta$ on the stack, don't know if we have a handle on top of the stack, or we need to shift some more input to get βx vhich is a handle.

- Shift-reduce conflict
- Example: if-then-else

Case 2: With $\alpha \beta_{1} \beta_{2}$ on the stack, don't know if $A \longrightarrow \beta_{2}$ is the handle, or $B \longrightarrow \beta_{1} \beta_{2}$ is the handle

- Reduce-reduce conflict
- Example: $E \longrightarrow E-E|-E| i d$

Viable Prefix

- Prefix of a right-sentential form that does not continue beyond the rightmost handle.
- With $\alpha \beta \mathcal{N}$ example of the previous slides, a viable prefix is something of the form $\alpha \beta_{1}$ where $\beta=\beta_{1} \beta_{2}$

LR Parsing
－Stack contents as $s_{0} X_{1} s_{1} X_{2} \cdots X_{m} s_{m}$
－Its actions are driven by two tables，action and goto

action $\left[s_{m}, a_{i}\right]$ can be：
－shift（s：hew config is $\left(s_{0} X_{1} s_{1} X_{2} \cdots X_{m} s_{m} a_{i} s, a_{i+1} \cdots a_{n} \$\right)$
－reduce $A \longrightarrow \beta$ ：Let $|\beta|=r$ ，goto $\left[s_{m-r}, A \mid=s\right.$ ：new config is $\left(s_{0} X_{1} s_{1} X_{2} \cdots X_{m-r} s_{m-r} A s, \overline{a_{i}} a_{i+1} \cdots a_{n} \$\right)$
－error：perform recovery actions
－accept：Done parsing

LR Parsing

- action and goto depend only on the state at the top of the stack, not on all of the stack contents
- The s_{i} states compactly summarize the "relevant" stack content that is at the top of the stack.
- You can think of goto as the action taken by the parser on "consuming" (and shifting) nonterminals
- similar to the shift action in the action table, except that the transition is on a nonterminal rather than a terminal
- The action and goto tables define the transitions of an FSA that accepts RHS of productions!

Example of LR Parsing Table and its Use

- See Text book Algorithm 4.7: (follows directly from description of LR parsing actions 2 slides earlier)
- See expression grammar (Example 4.33), its associated parsing table in Fig 4.31, and the use of the table to parse id $* i d+i d$ (Fig 4.32)

LR Versus LL Parsing

Intuitively:

- LL parser needs to guess the production based on the first symbol (or first few symbols) on the RHS of a production
- LR parser needs to guess the production after seeing all of the RHS

Both types of parsers can use next k input symbols as look-ahead symbols $(\operatorname{LL}(k)$ and $\operatorname{LR}(k)$ parsers)

- Implication: $L L(k) \subset L R(k)$

How to Construct LR Parsing Table?

Key idea: Construct an FSA to recognize RHS of productions

- States of FSA remember which parts of RHS have been seen already.
- We use ". " to separate seen and unseen parts of RHS

LR(0) item: A production with ". " somewhere on the RHS. Intuitively, \triangleright grammar symbols before the ". " are on stack;
\triangleright grammar symbols after the ". "represent symbols in the input stream.

How to Construct LR Parsing Table?

- If there is no way to distinguish between two different productions at some point during parsing, then the same state should represent both.
- Closure operation: If a state s includes $\operatorname{LR}(0)$ intern $A \longrightarrow \alpha \cdot B \beta$, and there is a production $B \longrightarrow \gamma$, then s should include $B \longrightarrow \cdot \gamma$
- goto operation: For a set I of items, goto[I, X] is the closure of all items $A \longrightarrow \alpha X \dot{ }$ 院 for each $A \longrightarrow \alpha ; X \beta$ in I

Item set: A set of items that is closed under the closure operation, corresponds to a state of the parser.

Constructing Simple LR (SLR) Parsing Tables

Step 1: Construct LR(0) items (Item set construction) \rightarrow states
Step 2: Construct a DFA for recognizing items
Step 3: Define action and goto based on the DFA

Item Set Construction

1. Augment the grammar with a rule $S^{\prime} \longrightarrow S$, and make S^{\prime} the new start symbol
2. Start with initial set I_{0} corresponding to the item $S^{\prime} \longrightarrow \cdot S$
3. apply closure operation on I_{0}.
4. For each item set I and grammar symbol X, add goto $[I, X]$ to the set of items
5. Repeat previous step until no new item sets are generated.

Item Set Construction

Item Set Construction (Contd.)

Item Set Construction (Contd.)

$$
\begin{aligned}
& E^{\prime} \longrightarrow E \quad E \longrightarrow E+T \mid T \\
& I_{8}: F \longrightarrow(E \cdot) \\
& I_{9}: E \longrightarrow E+T . \\
& I_{10}: T \longrightarrow T * F * F \mid F(i d \\
& I_{11}: F \longrightarrow(E) .
\end{aligned}
$$

Item Sets for the Example

SLR(1) Parse Table for the Example Grammar

Defining action and goto tables

- Let $I_{0}, I_{1}, \ldots, I_{n}$ be the item sets constructed before
- Define action as follows

- If $A \longrightarrow \alpha \cdot \stackrel{\nless a}{a}$ is in I_{i} and there is a DFA transition to I_{j} from I_{i} on symbol a then action $[i, a]=$ "shift $j "$ b
- If $A \longrightarrow \alpha \cdot$ is in I_{i} then action $[i, a]^{\prime}=$ "reduce $A \longrightarrow \alpha$ " for every $\not \alpha \in \operatorname{FOLLOW}(A)$
- If $S^{\prime} \longrightarrow S \cdot$ is in I_{i} then action $\left[I_{i}, \$\right]=$ "accept"
- If any conflicts arise in the above procedure, then the grammar is not $\operatorname{SLR}(1)$.
- goto transition for LR parsing defined directly from the DFA transitions.
- All undefined entries in the table are filled with "error"

Defining action and goto tables

- Let $I_{0}, I_{1}, \ldots, I_{n}$ be the item sets constructed before
- Define action as follows

- If $A \longrightarrow \alpha \sim$. \underline{a} is in I_{i} and there is a DFA transition to $\underline{I}_{\underline{I}}$ from I_{i} on symbol a then action $[i, a] \neq$ "shift j"

- If $A \longrightarrow \alpha \odot$ is in I_{i} then action $[i, a]^{\prime}=$ "reduce $A \rightarrow \alpha$ " for every $\alpha \in \operatorname{FOLLOW}(A)$
- If $S^{\prime} \longrightarrow S \odot$ is in I_{i} then action $\left[I_{i}, \$\right]=$ "accept"
- If any conflicts arise in the above procedure, then the grammar is not $\operatorname{SLR}(1)$.
d goto transition for LR parsing defined directly from the DFA transitions.
- All undefined entries in the table are filled with "error"

Deficiencies of SLR Parsing

$$
\begin{aligned}
& S L R=\angle R C D) \text { item sets }+\angle R(1) \\
& \frac{1}{1} \text { look a heed for reduction }
\end{aligned}
$$

$\operatorname{SLR}(1)$ treats all occurrences of a RHS on stack as identical.
Only a few of these reductions may lead to a successful parse.

Example:
 FOLLOW $(A)=\{a, b\}$ Follow $(B)=\{a, b\}$

$$
I_{0}=\left\{\left[S^{\prime} \rightarrow \cdot S\right],[S \rightarrow: A \mathrm{a} A \mathrm{~b}],[S \rightarrow \text { BibBa}],[A \rightarrow:],[B \rightarrow \cdot]\right\} .
$$

Since $\operatorname{FOLLOW}(A)=\operatorname{FOLLOW}(B)$, we have reduce/reduce conflict in state 0 .

LR(1) Item Sets

Construct $\underline{\operatorname{LR}(1)}$ items of the form $A \longrightarrow \alpha$, β, which means:
The production $A \longrightarrow \alpha \beta /$ can be applied when the next token on input stream is a.

$S \longrightarrow A \mathrm{a} A \mathrm{~b}$	$A \longrightarrow \epsilon$
$S \longrightarrow B \mathrm{Bb} \mathrm{a}$	$B \longrightarrow \epsilon$

An example LR(1) item set:

$$
I_{0}=\frac{\left\{\left[S^{\prime} \rightarrow \cdot S, \$\right],[S \rightarrow \cdot A \mathrm{a} A \mathrm{~b}, \$],[S \rightarrow \cdot B \mathrm{~b} B \mathrm{a}, \$],\right.}{} \underset{A \rightarrow \cdot, \mathrm{a}],[B \rightarrow \cdot, \mathrm{~b}]\} .}{ }
$$

$\operatorname{LR}(1)$ and $\operatorname{LALR}(1)$ Parsing

LR (1) item sets
$\operatorname{LR}(1)$ parsing: Parse tables built using $\operatorname{LR}(1)$ item sets. Wat are identical except for the look LALR(1) parsing: Look Ahead LR (1) ahead
Merge LR (1) item sets; then build parsing table.
Typically, $\operatorname{LALR}(1)$ parsing tables are much smaller than $\operatorname{LR}(1)$ parsing table.

$$
\left\{\begin{array}{l}
\left(([A \rightarrow-a]) I_{0}\right. \\
x\left(([B \rightarrow-a]) I_{1}\right. \\
([A \rightarrow b]) I_{2} \\
(B \rightarrow \cdot b])
\end{array}\right.
$$

YACC

$\underline{\text { Yet }} \underline{\text { Another }}$ Compiler Compiler:

LALR(1) parser generator.

- Grammar rules are written in a specification (.y) file, analogous to the regular definitions in a lex specification file.
- Yacc translates the specifications into a parsing function yyparse().

$$
\text { spec.y } \xrightarrow{\text { yacc }} \text { spec.tab.c }
$$

- yyparse () calls yylex () whenever input tokens need to be consumed.
- bison: GNU variant of yacc.

Using Yacc

\% \{
... C headers (\#include)

YACC

Yet $\underline{\text { Another Compiler Compiler: }}$
 LALR(1) parser generator.

- Grammar rules are written in a specification (.y) file, analogous to the regular definitions in a lex specification file.
- Yacc translates the specifications into a parsing function yyparse().

$$
\text { spec.y } \xrightarrow{\text { yacc }} \text { spec.tab.c }
$$

- yyparse() calls yylex() whenever input tokens need to be consumed.
- bison: GNU variant of yacc.

Using Yacc

\% \{
... C headers (\#include)
\%\}
... Yacc declarations:
\%token
\%union\{... $\}$
precedences
\%\%
... Grammar rules with actions:
Expr: Expr TOK_PLUS Expr
| Expr TOK_MINUS Expr
\%\%
... C support functions

Conflicts and Resolution

$$
\begin{aligned}
\text { ifStmt } \rightarrow & \text { if Expr Len S] } \\
& \text { if Expo ten Selse } S
\end{aligned}
$$

- Operator precedence works well for resolving conflicts that involve operators
- But use it with care - only when they make sense, not for the sole purpose of removing conflict reports
- Shift-reduce conflicts: Bison favors shift
- Except for the dangling-else problem, this strategy does not ever seem to work, so don't rely on it.

Reduce-Reduce Conflicts

In general, grammar needs to be rewritten to eliminate conflicts.

Sample Bison File: Postfix Calculator.

Infix Calculator
\% \{
\#define YYSTYPE double
\#include <math.h>
\#include <stdio.h>
int yylex (void);
void yyerror (char const *);
\%\}
/* Bison Declarations */
\%token NUM
\%left ', ', ', lower precedence
\%left ',',',' B higher
\%left NEG /* negation--unary minus */
\%right '^' /* exponentiation */

$$
\begin{aligned}
& 5+5 * 3 \\
& \underbrace{(5+5) * 3}_{5+(5 * 3)} \xrightarrow{55+3 *}
\end{aligned}
$$

Infix Calculator (Continued)

Error Recovery

line:

\{ printf ("\t\%.10g\n", \$1); \}
\{ yyerrok;

- Pop stack contents to expose a state where an error token is acceptable
- Shift error token onto the stack
- Discard input until reaching a token that can follow this error token

Error recovery strategies are never perfect - some times they lead to cascading errors, unless carefully designed.

Left Versus Right Recursion

expseq1:


```
5,5,5,5,5
```

\qquad
is a left-recursive definition of a sequence of exp's, whereas expseq1: $\exp \mid \exp$ ',' expseq1; \triangle
is a right-recursive definition

- Left-recursive definitions are a no-no for LL parsing, but yes-yes for LR parsing
- Right-recursive definition is bad for LR parsing as it needs to shift the entire list on stack before any reduction - increases stack usage

