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Optimization Techniques
 The most complex component of modern compilers
 Must always be sound, i.e., semantics-preserving

• Need to pay attention to exception cases as well

• Use a conservative approach: risk missing out optimization rather 
than changing semantics

 Reduce runtime resource requirements (most of the time)
• Usually, runtime, but there are memory optimizations as well

• Runtime optimizations focus on frequently executed code 
• How to determine what parts are frequently executed?

• Assume: loops are executed frequently

• Alternative: profile-based optimizations

• Some optimizations involve trade-offs, e.g., more memory for 
faster execution

 Cost-effective, i.e., benefits of optimization must be worth 
the effort of its implementation
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Code Optimizations
 High-level optimizations

• Operate at a level close to that of source-code

• Often language-dependent

 Intermediate code optimizations
• Most optimizations fall here

• Typically, language-independent

 Low-level optimizations
• Usually specific to each architecture
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High-level optimizations

• Inlining
•Replace function call with the function body

• Partial evaluation 
•Statically evaluate those components of a 
  program that can be evaluated

• Tail recursion elimination
• Loop reordering
• Array alignment, padding, layout
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Intermediate code optimizations

• Common subexpression elimination
• Constant propagation
• Jump-threading
• Loop-invariant code motion
• Dead-code elimination
• Strength reduction
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Constant Propagation
 Identify expressions that can be evaluated at 

compile time, and replace them with their 
values.

  x = 5;         =>    x =    5;      =>   x =    5;
 y = 2;                 y = 2;                 y = 2;
 v = u + y;           v = u + y;           v = u + 2;
 z = x * y;            z = x * y;            z = 10;
 w = v + z + 2;    w = v + z + 2;    w = v + 12;
 ...                       ...                      ...

R

R

R

R

R

R

R

R

R



 6

Strength Reduction

•Replace expensive operations with equivalent
 cheaper (more efficient) ones.
        y = 2;       =>      y = 2;
        z = x^y;              z = x*x;
         ...                       ...
•The underlying architecture may determine
  which operations are cheaper and which 
  ones are more expensive.
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Loop-Invariant Code Motion

•Move code whose effect is independent of 
 the loop's iteration outside the loop.
  for (i=0; i<N; i++) {     =>      for (i=0; i<N; i++) {
     for (j=0; j<N; i++) {               base = a + (i * dim1);
        ... a[i][j] ...                          for (j=0; j<N; i++) {
                                                       ... (base + j) ...
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Low-level Optimizations

• Register allocation
• Instruction Scheduling for pipelined machines.
• loop unrolling
• instruction reordering
• delay slot filling

• Utilizing features of specialized components,
   e.g., floating-point units.
• Branch Prediction
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Peephole Optimization
• Optimizations that examine small code sections at a time,
  and transform them

• Peephole: a small, moving window in the target program

• Much simpler to implement than global optimizations

• Typically applied at machine code, and some times at
  intermediate code level as well

• Any optimization can be a peephole optimization, 
  provided it operates on the code within the peephole.

• redundant instruction elimination

• flow-of control optimizations

• algebraic simplifications

• ...
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Profile-based Optimization
• A compiler has difficulty in predicting:

• likely outcome of branches

• functions and/or loops that are most frequently 
  executed

• sizes of arrays

• or more generally, any thing that depends on 
  dynamic rogram behavior.

• Runtime profiles can provide this missing information,
  making it easier for compilers to decide when certain
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Example Program: Quicksort
Most optimizations 

opportunities arise in 
intermediate code
• Several aspects of 

execution (e.g., address 
calculation for array 
access) aren’t exposed in 
source code

Explicit representations 
provide most 
opportunities  for 
optimization

It is best for programmers 
to focus on writing 
readable code, leaving 
simple optimizations to a 
compiler
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3-address code for Quicksort
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Organization of Optimizer
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Flow Graph for Quicksort
B1,…,B6 are basic blocks

• sequence of statements where 
control enters at beginning, 
with no branches in the middle

Possible optimizations
• Common subexpression 

elimination (CSE)

• Copy propagation
• Generalization of constant 

folding to handle assignments 
of the form x = y

• Dead code elimination

• Loop optimizations
• Code motion

• Strength reduction

• Induction variable elimination
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Common Subexpression Elimination
Expression 

previously 
computed

Values of all 
variables in 
expression have 
not changed.

Based on 
available 
expressions 
analysis
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Copy Propagation
 Consider

   x = y;
   z = x*u;
   w = y*u;
Clearly, we can replace 
assignment on w by
    w = z

 This requires recognition of 
cases where multiple variables 
have same value (i.e., they are 
copies of each other)

 One optimization may expose 
opportunities for another

• Even the simplest 
optimizations can pay off

• Need to iterate optimizations 
a few times
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Dead Code Elimination
Dead variable: a 

variable whose value is 
no longer used

Live variable: opposite 
of dead variable

Dead code: a statement 
that assigns to a dead 
variable

Copy propagation turns 
copy statement into 
dead code.
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Induction Vars, Strength Reduction 
and IV Elimination

 Induction Var: a variable whose value 
changes in lock-step with a loop index

 If expensive operations are used for 
computing IV values, they can be replaced 
by less expensive operations

 When there are multiple IVs, some can be 
eliminated
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Strength Reduction on IVs
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After IV Elimination …
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Program Analysis
 Optimization is usually expressed as a 

program transformation
    C1   C2 when property P holds

 Whether property P holds is determined by a 
program analysis

 Most program properties are undecidable in 
general
• Solution: Relax the problem so that the answer is 

an “yes” or “don’t know”
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Applications of Program Analysis
 Compiler optimization
 Debugging/Bug-finding

• “Enhanced” type checking
• Use before assign
• Null pointer dereference
• Returning pointer to stack-allocated data

 Vulnerability analysis/mitigation
• Information flow analysis

• Detect propagation of sensitive data, e.g., passwords
• Detect use of untrustworthy data in security-critical context 

• Find potential buffer overflows
 Testing – automatic generation of test cases
 Verification: Show that program satisfies a specified 

property, e.g., no deadlocks
• model-checking
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Dataflow Analysis
Answers questions relating to how data flows 

through a program
•What can be asserted about the value of a variable (or 

more generally, an expression) at a program point
Examples

•Reaching definitions: which assignments reach a 
program statement

•Available expressions

• Live variables

•Dead code

•…
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Dataflow Analysis
 Equations typically of the form

   out[S] = gen[S]  (in[S] – kill[S])
where the definitions of out, gen, in and kill
differ for different analysis

 When statements have multiple 
predecessors, the equations have to be 
modified accordingly

 Procedure calls, pointers and arrays require 
careful treatment

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R



 25

Points and Paths
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Reaching Definitions
 A definition of a variable x is a statement that 

assigns to x
• Ambiguous definition: In the presence of aliasing, a 

statement may define a variable, but it may be impossible to 
determine this for sure.

 A definition d reaches a point p provided:
• There is a path from d to p, and this definition is not “killed” 

along p

• “Kill” means an unambiguous redefinition

 Ambiguity  approximation
• Need to ensure that approximation is in the right direction, 

so that the analysis will be sound
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DFA of Structured Programs
 S  id := E 

     | S;S 
     | if E then S else S
     | do S while E

 E  E + E
     | id
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DF Equations for Reaching Defns
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DF Equations for Reaching Defns
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Direction of Approximation
 Actual kill is a superset of the set computed by 

the dataflow equations
 Actual gen is a subset of the set computed by 

these equations
 Are other choices possible?

• Subset approximation of kill, superset approximation of gen

• Subset approximation of both

• Superset approximation of both

 Which approximation is suitable depends on the 
intended use of analysis results
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Solving Dataflow Equations
 Dataflow equations are recursive
 Need to compute so-called fixpoints, to solve 

these equations
 Fixpoint computations uses an interative 

procedure
• out0 =  

• outi is computed using the equations by 
substituting outi-1 for occurrences of out on the rhs

• Fixpoint is a solution, i.e., outi = outi-1
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Computing Fixpoints: Equation for Loop
 Rewrite equations using more compact notation, with:

   J standing for in[S] and 
   I, G, K, and O  for in[S1], gen[S1], kill[S1] and out[S1]: 
        I = J  O,
       O = G (I – K)

 Letting I0 = O0 = we have:
 I1 = J O1 = G (I0 – K) = G
 I2 = J  O1 = J  G O2 = G (I1 – K) = G (J – K)
 I3 = J  O2 O3 = G (I2 – K) 
     = J G (J – K) = G (J  G – K) 
     = J G = I2 = G (J – K) = O2

(Note that for all sets A and B, A U (A-B) = A, and
                 for all sets A, B and C, A U (A U C –B) = A U (C-B).)  
Thus, we have a fixpoint.
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Use-Definition Chains
 Convenient way to represent reaching 

definition information
 ud-chain for a variable links each use of the 

variable to its reaching definitions
• One list for each use of a variable
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Available Expressions
 An expression e is available at point p if 

• every path to p evaluates e

• none of the variables in e are assigned after last 
computation of e

 A block kills e if it assigns to some variable in e 
and does not recompute e.

  A block generates e if it computes e and doesn’t 
subsequently assign to variables in e

 Exercise: Set up data-flow equations for 
available expressions. Give an example use for 
which your equations are sound, and another 
example for which they aren’t
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Available expressions -- Example

a := b+c

b := a-d

c := b+c

d := a-d
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Live Variable Analysis
 A variable x is live at a program point p if the 

value of x is used in some path from p
 Otherwise, x is dead.
 Storage allocated for dead variables can be 

freed or reused for other purposes.
 in[B] = use[B]  (out[B] – def[B])
 out[B] =  in[S], for S a successor of B
 Equation similar to reaching definitions, but 

the role of in and out are interchanged
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Def-Use Chains
 du-chain links the definition of a variable with 

all its uses
• Use of a definition of a variable x at a point p 

implies that there is a path from this definition to p 
in which there are no assignments to x

 du-chains can be computed using a dataflow 
analysis similar to that for live variables
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Optimizations and Related Analyses
 Common subexpression elimination

• Available expressions
 Copy propagation

• In every path that reaches a program point p, the variables 
x and y have identical values

 Detection of loop-invariant computation
• Any assignment x := e where the definition of every variable 

in e occurs outside the loop.
 Code reordering: A statement x := e can be moved

• earlier before statements that (a) do not use x, (b) do not 
assign to variables in e

• later after statements that (a) do not use x, (b) do not assign 
to variables in e
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Difficulties in Analysis
 Procedure calls

 Aliasing
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Difficulties in Analysis
 Procedure calls

• may modify global variables

• potentially kill all available expressions involving global 
variables 

• modify reaching definitions on global variables

 Aliasing
• Create ambiguous definitions

• a[i] = a[j] --- here, i and j may have same value, so 
assignment to a[i] can potentially kill a[j]

• *p = q + r --- here, p could potentially point to q, r or any 
other variable

• creates ambiguous redefinition for all variables in the program!
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