
 1

Optimization Techniques
 The most complex component of modern compilers
 Must always be sound, i.e., semantics-preserving

• Need to pay attention to exception cases as well

• Use a conservative approach: risk missing out optimization rather
than changing semantics

 Reduce runtime resource requirements (most of the time)
• Usually, runtime, but there are memory optimizations as well

• Runtime optimizations focus on frequently executed code
• How to determine what parts are frequently executed?

• Assume: loops are executed frequently

• Alternative: profile-based optimizations

• Some optimizations involve trade-offs, e.g., more memory for
faster execution

 Cost-effective, i.e., benefits of optimization must be worth
the effort of its implementation

R

R

R

R

R

R

 2

Code Optimizations
 High-level optimizations

• Operate at a level close to that of source-code

• Often language-dependent

 Intermediate code optimizations
• Most optimizations fall here

• Typically, language-independent

 Low-level optimizations
• Usually specific to each architecture

R

R

R

R

R

R

 3

High-level optimizations

• Inlining
•Replace function call with the function body

• Partial evaluation
•Statically evaluate those components of a
 program that can be evaluated

• Tail recursion elimination
• Loop reordering
• Array alignment, padding, layout

R

R

R

R

 4

Intermediate code optimizations

• Common subexpression elimination
• Constant propagation
• Jump-threading
• Loop-invariant code motion
• Dead-code elimination
• Strength reduction

R

R

R

R

 5

Constant Propagation
 Identify expressions that can be evaluated at

compile time, and replace them with their
values.

 x = 5; => x = 5; => x = 5;
 y = 2; y = 2; y = 2;
 v = u + y; v = u + y; v = u + 2;
 z = x * y; z = x * y; z = 10;
 w = v + z + 2; w = v + z + 2; w = v + 12;

R

R

R

R

R

R

R

R

R

 6

Strength Reduction

•Replace expensive operations with equivalent
 cheaper (more efficient) ones.
 y = 2; => y = 2;
 z = x^y; z = x*x;

•The underlying architecture may determine
 which operations are cheaper and which
 ones are more expensive.

R

R

R

R

R

R

R

R

 7

Loop-Invariant Code Motion

•Move code whose effect is independent of
 the loop's iteration outside the loop.
 for (i=0; i<N; i++) { => for (i=0; i<N; i++) {
 for (j=0; j<N; i++) { base = a + (i * dim1);
 ... a[i][j] ... for (j=0; j<N; i++) {
 ... (base + j) ...

R

R

R

R

R

R

R

R

R

R

 8

Low-level Optimizations

• Register allocation
• Instruction Scheduling for pipelined machines.
• loop unrolling
• instruction reordering
• delay slot filling

• Utilizing features of specialized components,
 e.g., floating-point units.
• Branch Prediction

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 9

Peephole Optimization
• Optimizations that examine small code sections at a time,
 and transform them

• Peephole: a small, moving window in the target program

• Much simpler to implement than global optimizations

• Typically applied at machine code, and some times at
 intermediate code level as well

• Any optimization can be a peephole optimization,
 provided it operates on the code within the peephole.

• redundant instruction elimination

• flow-of control optimizations

• algebraic simplifications

• ...

R

 10

Profile-based Optimization
• A compiler has difficulty in predicting:

• likely outcome of branches

• functions and/or loops that are most frequently
 executed

• sizes of arrays

• or more generally, any thing that depends on
 dynamic rogram behavior.

• Runtime profiles can provide this missing information,
 making it easier for compilers to decide when certain

R

R

R

 11

Example Program: Quicksort
Most optimizations

opportunities arise in
intermediate code
• Several aspects of

execution (e.g., address
calculation for array
access) aren’t exposed in
source code

Explicit representations
provide most
opportunities for
optimization

It is best for programmers
to focus on writing
readable code, leaving
simple optimizations to a
compiler

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 12

3-address code for Quicksort

R

 13

Organization of Optimizer

R

R

R

R

 14

Flow Graph for Quicksort
B1,…,B6 are basic blocks

• sequence of statements where
control enters at beginning,
with no branches in the middle

Possible optimizations
• Common subexpression

elimination (CSE)

• Copy propagation
• Generalization of constant

folding to handle assignments
of the form x = y

• Dead code elimination

• Loop optimizations
• Code motion

• Strength reduction

• Induction variable elimination

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 15

Common Subexpression Elimination
Expression

previously
computed

Values of all
variables in
expression have
not changed.

Based on
available
expressions
analysis

R

R

R

R

R

R

R

 16

Copy Propagation
 Consider

 x = y;
 z = x*u;
 w = y*u;
Clearly, we can replace
assignment on w by
 w = z

 This requires recognition of
cases where multiple variables
have same value (i.e., they are
copies of each other)

 One optimization may expose
opportunities for another

• Even the simplest
optimizations can pay off

• Need to iterate optimizations
a few times

R

R

R

 17

Dead Code Elimination
Dead variable: a

variable whose value is
no longer used

Live variable: opposite
of dead variable

Dead code: a statement
that assigns to a dead
variable

Copy propagation turns
copy statement into
dead code.

R

R

R

R

R

R

R

R

 18

Induction Vars, Strength Reduction
and IV Elimination

 Induction Var: a variable whose value
changes in lock-step with a loop index

 If expensive operations are used for
computing IV values, they can be replaced
by less expensive operations

 When there are multiple IVs, some can be
eliminated

R

R

R

R

 19

Strength Reduction on IVs

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 20

After IV Elimination …

R

R

R

R

R

R

 21

Program Analysis
 Optimization is usually expressed as a

program transformation
 C1 C2 when property P holds

 Whether property P holds is determined by a
program analysis

 Most program properties are undecidable in
general
• Solution: Relax the problem so that the answer is

an “yes” or “don’t know”

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 22

Applications of Program Analysis
 Compiler optimization
 Debugging/Bug-finding

• “Enhanced” type checking
• Use before assign
• Null pointer dereference
• Returning pointer to stack-allocated data

 Vulnerability analysis/mitigation
• Information flow analysis

• Detect propagation of sensitive data, e.g., passwords
• Detect use of untrustworthy data in security-critical context

• Find potential buffer overflows
 Testing – automatic generation of test cases
 Verification: Show that program satisfies a specified

property, e.g., no deadlocks
• model-checking

R

R

R

 23

Dataflow Analysis
Answers questions relating to how data flows

through a program
•What can be asserted about the value of a variable (or

more generally, an expression) at a program point
Examples

•Reaching definitions: which assignments reach a
program statement

•Available expressions

• Live variables

•Dead code

•…

R

 24

Dataflow Analysis
 Equations typically of the form

 out[S] = gen[S] (in[S] – kill[S])
where the definitions of out, gen, in and kill
differ for different analysis

 When statements have multiple
predecessors, the equations have to be
modified accordingly

 Procedure calls, pointers and arrays require
careful treatment

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 25

Points and Paths

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 26

Reaching Definitions
 A definition of a variable x is a statement that

assigns to x
• Ambiguous definition: In the presence of aliasing, a

statement may define a variable, but it may be impossible to
determine this for sure.

 A definition d reaches a point p provided:
• There is a path from d to p, and this definition is not “killed”

along p

• “Kill” means an unambiguous redefinition

 Ambiguity approximation
• Need to ensure that approximation is in the right direction,

so that the analysis will be sound

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 27

DFA of Structured Programs
 S id := E

 | S;S
 | if E then S else S
 | do S while E

 E E + E
 | id

R

R

R

R

R

R

R

R

R

R

 28

DF Equations for Reaching Defns

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 29

DF Equations for Reaching Defns

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 30

Direction of Approximation
 Actual kill is a superset of the set computed by

the dataflow equations
 Actual gen is a subset of the set computed by

these equations
 Are other choices possible?

• Subset approximation of kill, superset approximation of gen

• Subset approximation of both

• Superset approximation of both

 Which approximation is suitable depends on the
intended use of analysis results

R

R

R

R

R

R

R

R

R

R

 31

Solving Dataflow Equations
 Dataflow equations are recursive
 Need to compute so-called fixpoints, to solve

these equations
 Fixpoint computations uses an interative

procedure
• out0 =

• outi is computed using the equations by
substituting outi-1 for occurrences of out on the rhs

• Fixpoint is a solution, i.e., outi = outi-1

R

R

R

R

R

R

R

 32

Computing Fixpoints: Equation for Loop
 Rewrite equations using more compact notation, with:

 J standing for in[S] and
 I, G, K, and O for in[S1], gen[S1], kill[S1] and out[S1]:
 I = J O,
 O = G (I – K)

 Letting I0 = O0 = we have:
 I1 = J O1 = G (I0 – K) = G
 I2 = J O1 = J G O2 = G (I1 – K) = G (J – K)
 I3 = J O2 O3 = G (I2 – K)
 = J G (J – K) = G (J G – K)
 = J G = I2 = G (J – K) = O2

(Note that for all sets A and B, A U (A-B) = A, and
 for all sets A, B and C, A U (A U C –B) = A U (C-B).)
Thus, we have a fixpoint.

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 33

Use-Definition Chains
 Convenient way to represent reaching

definition information
 ud-chain for a variable links each use of the

variable to its reaching definitions
• One list for each use of a variable

R

R

R

R

R

R

R

R

R

R

R

R

 34

Available Expressions
 An expression e is available at point p if

• every path to p evaluates e

• none of the variables in e are assigned after last
computation of e

 A block kills e if it assigns to some variable in e
and does not recompute e.

 A block generates e if it computes e and doesn’t
subsequently assign to variables in e

 Exercise: Set up data-flow equations for
available expressions. Give an example use for
which your equations are sound, and another
example for which they aren’t

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 35

Available expressions -- Example

a := b+c

b := a-d

c := b+c

d := a-d

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 36

Live Variable Analysis
 A variable x is live at a program point p if the

value of x is used in some path from p
 Otherwise, x is dead.
 Storage allocated for dead variables can be

freed or reused for other purposes.
 in[B] = use[B] (out[B] – def[B])
 out[B] = in[S], for S a successor of B
 Equation similar to reaching definitions, but

the role of in and out are interchanged

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 37

Def-Use Chains
 du-chain links the definition of a variable with

all its uses
• Use of a definition of a variable x at a point p

implies that there is a path from this definition to p
in which there are no assignments to x

 du-chains can be computed using a dataflow
analysis similar to that for live variables

R

R

R

R

R

 38

Optimizations and Related Analyses
 Common subexpression elimination

• Available expressions
 Copy propagation

• In every path that reaches a program point p, the variables
x and y have identical values

 Detection of loop-invariant computation
• Any assignment x := e where the definition of every variable

in e occurs outside the loop.
 Code reordering: A statement x := e can be moved

• earlier before statements that (a) do not use x, (b) do not
assign to variables in e

• later after statements that (a) do not use x, (b) do not assign
to variables in e

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

 39

Difficulties in Analysis
 Procedure calls

 Aliasing

 40

Difficulties in Analysis
 Procedure calls

• may modify global variables

• potentially kill all available expressions involving global
variables

• modify reaching definitions on global variables

 Aliasing
• Create ambiguous definitions

• a[i] = a[j] --- here, i and j may have same value, so
assignment to a[i] can potentially kill a[j]

• *p = q + r --- here, p could potentially point to q, r or any
other variable

• creates ambiguous redefinition for all variables in the program!

R

R

R

R

R

R

R

R

R

R

R

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

