Optimization Techniques

- The most complex component of modern compilers
- Must always be *sound*, i.e., semantics-preserving
 - Need to pay attention to exception cases as well
 - Use a conservative approach: risk missing out optimization rather than changing semantics
- Reduce runtime resource requirements (most of the time)
 - Usually, runtime, but there are memory optimizations as well
 - Runtime optimizations focus on frequently executed code
 - How to determine what parts are frequently executed?
 - Assume: loops are executed frequently
 - Alternative: profile-based optimizations
 - Some optimizations involve trade-offs, e.g., more memory for faster execution
- Cost-effective, i.e., benefits of optimization must be worth the effort of its implementation

Code Optimizations

- High-level optimizations
 - Operate at a level close to that of source-code
 - Often language-dependent
- Intermediate code optimizations
 - Most optimizations fall here
 - Typically, language-independent
- Low-level optimizations

Usually specific to each architecture

High-level optimizations

Inlining

•Replace function call with the function body

Partial evaluation

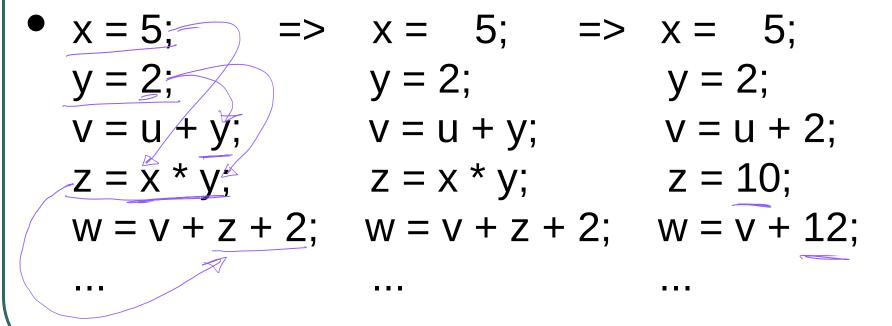
- •Statically evaluate those components of a program that can be evaluated
- Tail recursion elimination
- Loop reordering
- Array alignment, padding, layout

Intermediate code optimizations

- Common subexpression elimination
- Constant propagation
- Jump-threading
- Loop-invariant code motion
- Dead-code elimination
- Strength reduction

Constant Propagation

 Identify expressions that can be evaluated at compile time, and replace them with their values.



Strength Reduction

- •Replace expensive operations with equivalent cheaper (more efficient) ones. $y = \frac{9}{8}$
 - y = 2; = > y = 2; $z = x^{y}; z = x^{*}x;$
- •The underlying architecture may determine which operations are cheaper and which ones are more expensive.

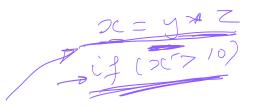
 $\mathcal{L} = (\mathcal{Y} > 73)$

Loop-Invariant Code Motion

•Move code whose effect is independent of the loop's iteration outside the loop. for (i=0; i<N; i++) { => for (i=0; i<N; i++) { for (j=0; j<N; i++) { base = a + (i * dim1); ... a[i][j] ... for (j=0; j<N; i++) { ... (base + j) ...

Low-level Optimizations

- Register allocation
- Instruction Scheduling for pipelined machines.
- loop unrolling
- instruction reordering
- delay slot filling



- Utilizing features of specialized components, e.g., floating-point units.
- Branch Prediction

Peephole Optimization

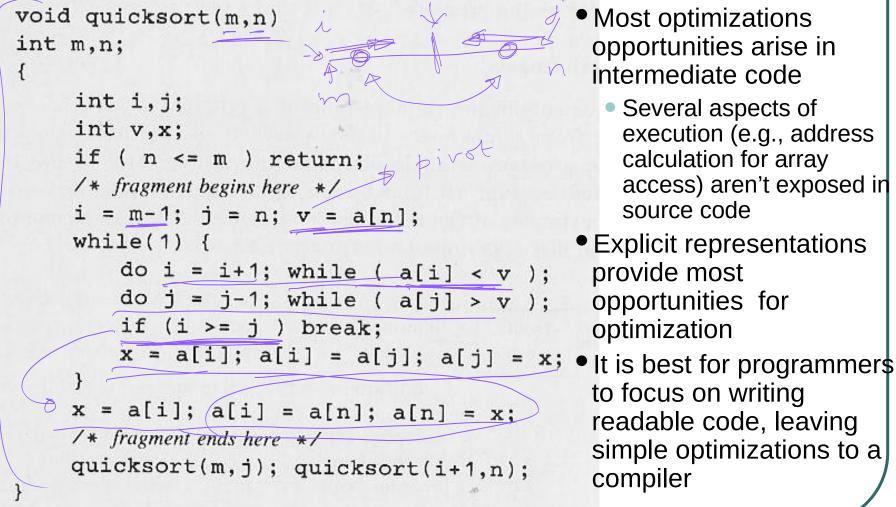
- Optimizations that examine small code sections at a time, and transform them
- Peephole: a small, moving window in the target program
- Much simpler to implement than global optimizations
- Typically applied at machine code, and some times at intermediate code level as well
- Any optimization can be a peephole optimization, provided it operates on the code within the peephole.
- redundant instruction elimination
- flow-of control optimizations
- algebraic simplifications

Profile-based Optimization

- A compiler has difficulty in predicting:
 - likely outcome of branches

- inline
- functions and/or loops that are most frequently executed
- sizes of arrays
- or more generally, any thing that depends on dynamic rogram behavior.
- Runtime profiles can provide this missing information, making it easier for compilers to decide when certain

Example Program: Quicksort



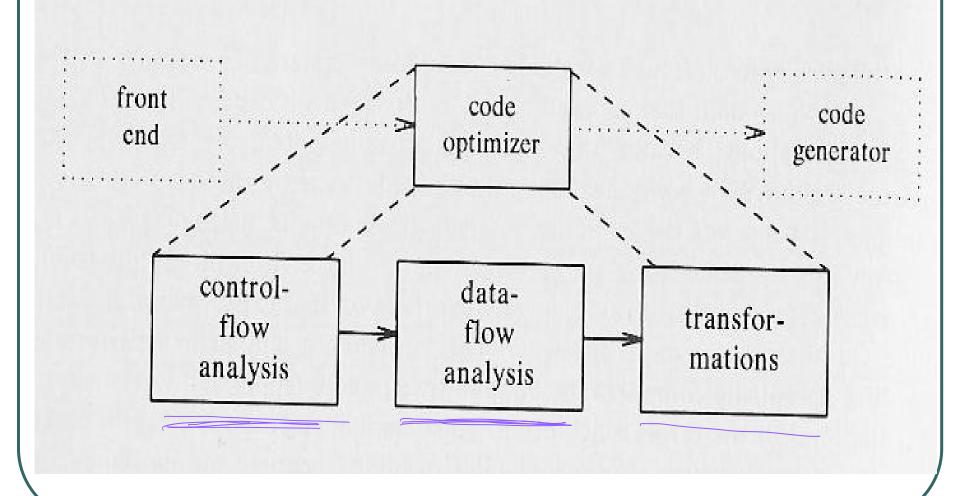
- Most optimizations opportunities arise in intermediate code
 - Several aspects of execution (e.g., address calculation for array access) aren't exposed in source code
- Explicit representations provide most opportunities for optimization
- to focus on writing readable code, leaving simple optimizations to a compiler

3-address code for Quicksort

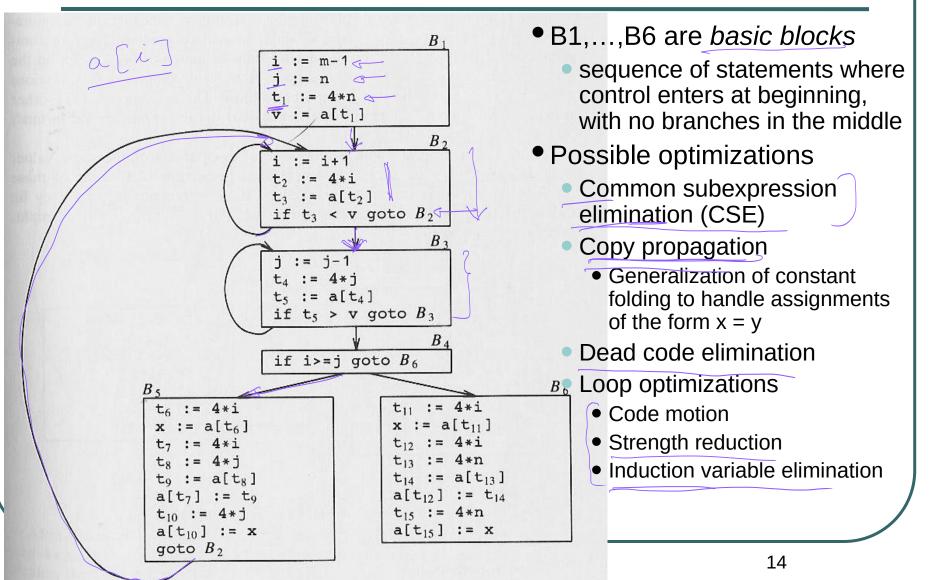
(1)	i :=	m-1		
(2)	j :=	n		
(3)	t ₁ :=	4*n 🔷		1000
(4)	v :=	$a[t_1]$		
(5)	1 :=	i+1	1000	
(6)	t ₂ :=	4*i		1
(7)	t ₃ :=	$a[t_2]$		1
(8)	if t ₃	< v goto	(5)	(
(9)	j :=			
(10)	t ₄ :=	4*j		(
(11)	t ₅ :=	$a[t_4]$		1
(12)		> v goto	(9)	(
(13)		>= j goto		1
(14)	t ₆ :=			1
(15)	x :=			(
				- 8

(16)	t ₇	:=	4*i
(17)	t ₈	:=	4*j
(18)	t9	:=	a[t8]
(19)	a[t ₇]		
(20)	t ₁₀	:=	4*j
(21)	$a[t_{10}]$:=	x
(22)	go	to	(5)
(23)	t ₁₁	:=	4*i
(24)	х	:=	a[t ₁₁]
(25)	t ₁₂	:=	4*i
(26)	t ₁₃	:=	4*n
(27)	t ₁₄	:=	$a[t_{13}]$
(28)	$a[t_{12}]$:=	t ₁₄
(29)	t ₁₅	:=	4*n
(30)	$a[t_{15}]$:=	x

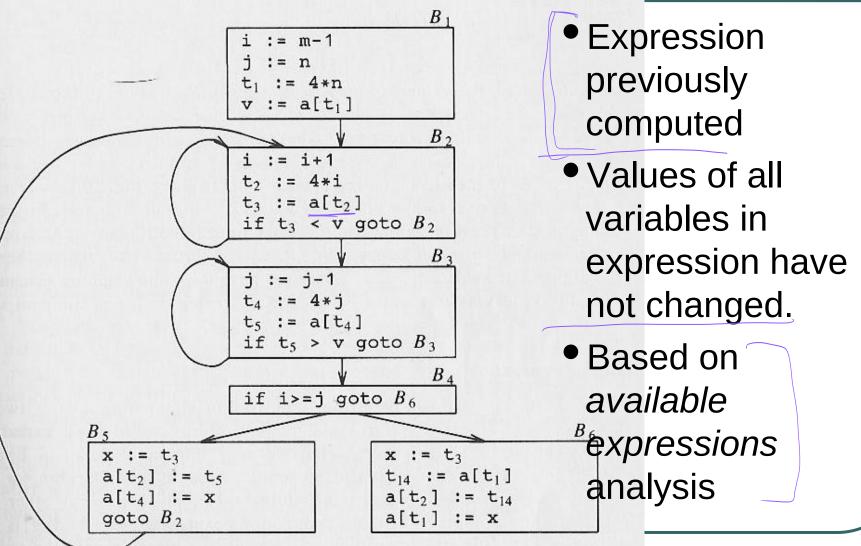
Organization of Optimizer



Flow Graph for Quicksort

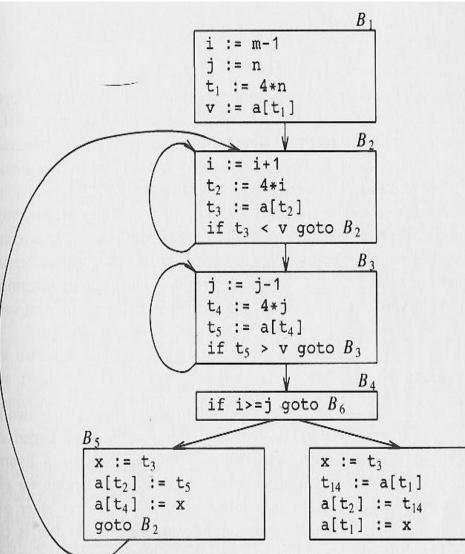


Common Subexpression Elimination



Copy Propagation

 B_6

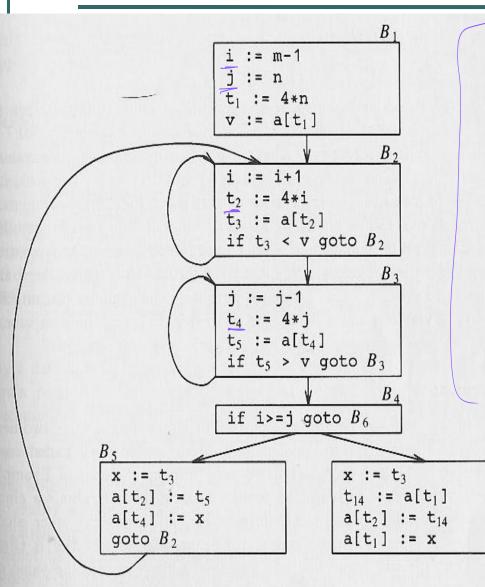


- Consider x = y;
 - x = y;z = x*u;

 $w = y^*u; \qquad x \neq w;$ Clearly, we can replace assignment on w by w = z

- This requires recognition of cases where multiple variables have same value (i.e., they are copies of each other)
- One optimization may expose opportunities for another
 - Even the simplest optimizations can pay off
 - Need to iterate optimizations a few times

Dead Code Elimination

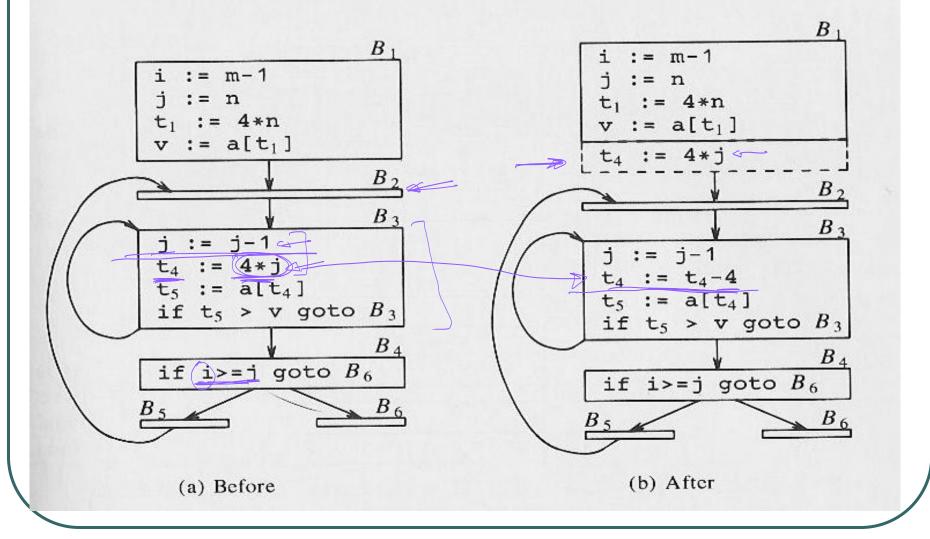


- Dead variable: a variable whose value is no longer used
- Live variable: opposite of dead variable
- Dead code: a statement that assigns to a dead variable
- Copy propagation turns
 ^B copy statement into dead code.

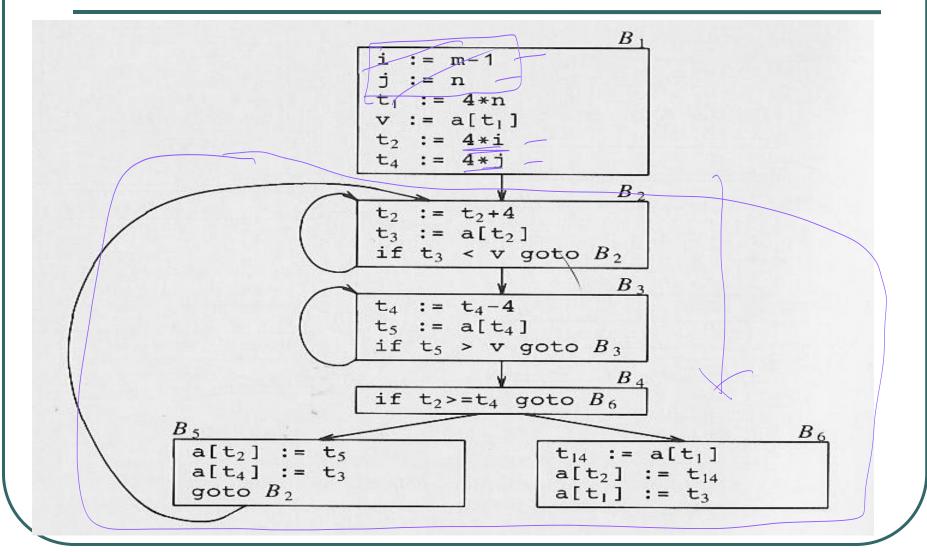
Induction Vars, Strength Reduction and IV Elimination

- Induction Var: a variable whose value changes in lock-step with a loop index
- If expensive operations are used for computing IV values, they can be replaced by less expensive operations
- When there are multiple IVs, some can be eliminated

Strength Reduction on IVs



After IV Elimination ...



Program Analysis

- Optimization is usually expressed as a program transformation $G_1 \Leftrightarrow C_2$ when property *P* holds
- Whether property *P* holds is determined by a program analysis
- Most program properties are undecidable in general
 - Solution: <u>Relax the problem so</u> that the answer is an "yes" or "don't know"

Applications of Program Analysis

- Compiler optimization
- Debugging/Bug-finding
 - "Enhanced" type checking
 - Use before assign
 - Null pointer dereference
 - Returning pointer to stack-allocated data
- Vulnerability analysis/mitigation
 - Information flow analysis
 - Detect propagation of sensitive data, e.g., passwords
 - Detect use of untrustworthy data in security-critical context
 - Find potential buffer overflows
- Testing automatic generation of test cases
- Verification: Show that program satisfies a specified property, e.g., no deadlocks
 - model-checking

Dataflow Analysis

- Answers questions relating to how data flows through a program
 - What can be asserted about the value of a variable (or more generally, an expression) at a program point

Examples

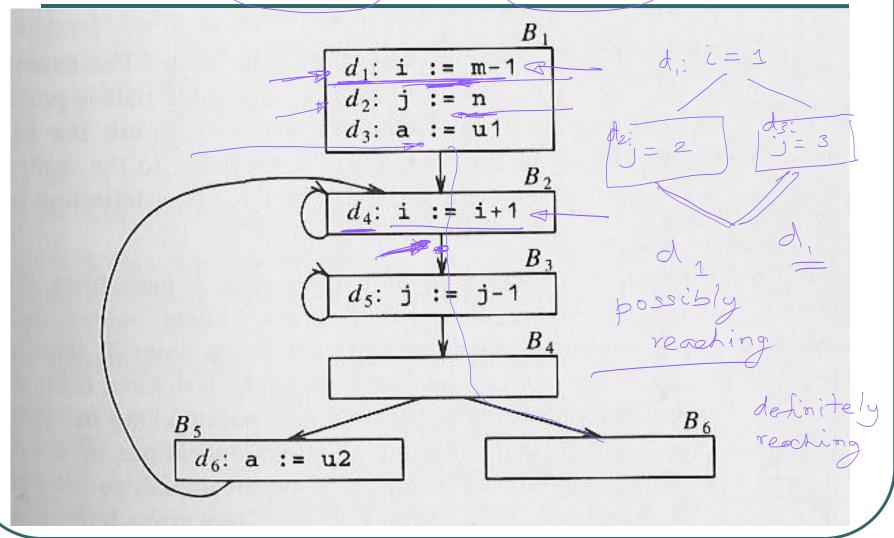
- Reaching definitions: which assignments reach a program statement
- Available expressions
- Live variables

Dead code

. . .

Dataflow Analysis

- Equations typically of the form
 out[S] = *gen*[S] ∪ (*in*[S] *kill*[S])
 where the definitions of *out, gen, in* and *kill* differ for different analysis
- When statements have multiple predecessors, the equations have to be modified accordingly
- Procedure calls, pointers and arrays require careful treatment



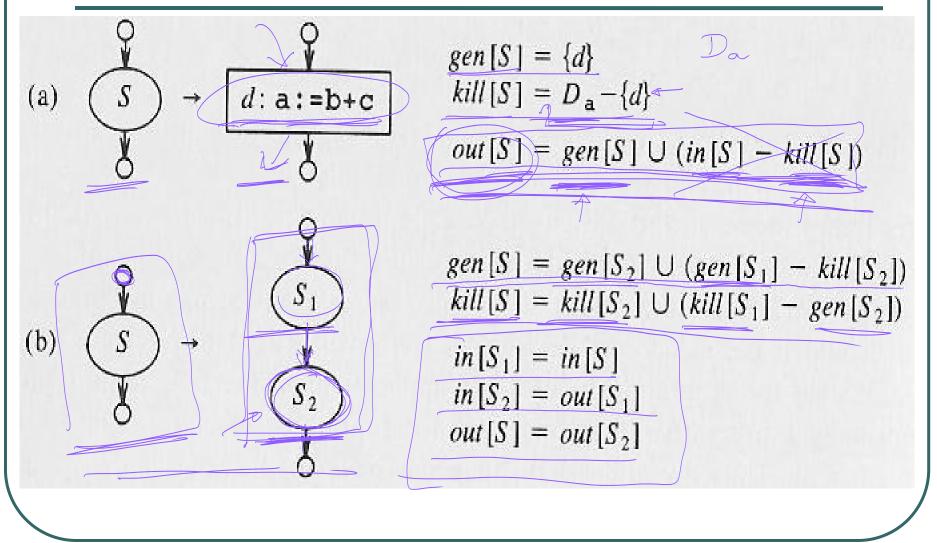
Reaching Definitions

- A *definition* of a variable *x* is a statement that assigns to *x*
 - Ambiguous definition: In the presence of aliasing, a statement may define a variable, but it may be impossible to determine this for sure.
- A definition *d* reaches a point *p* provided:
 - There is a path from *d* to *p*, and this definition is not "killed" along *p*
 - "Kill" means an unambiguous redefinition
- Ambiguity \rightarrow approximation
 - Need to ensure that approximation is in the right direction, so that the analysis will be sound

a = 1550

DFA of Structured Programs • $S \rightarrow id := E$ S;S if E then S else S do S while E • *E* → *E* + *E* id

DF Equations for Reaching Defns



DF Equations for Reaching Defns

(c) $(S) \rightarrow (S)$ $(S) \rightarrow (S)$	$gen[S] = gen[S_1] \cup gen[S_2]$ $kill[S] = kill[S_1] \cap kill[S_2]$ $in[S_1] = in[S]$ $in[S_2] = in[S]$ $out[S] = out[S_1] \cup out[S_2]$
(d) $(s) \rightarrow (s_1)$	$gen[S] = gen[S_1]$ $kill[S] = kill[S_1]$ $out[S] = out[S_1]$ $out[S] = out[S_1]$ $out[S] = gen[S_2] \cup (in[S_1-kill[S_1])$

Direction of Approximation

- Actual kill is a superset of the set computed by the dataflow equations
- Actual gen is a subset of the set computed by these equations
- Are other choices possible?
 - Subset approximation of kill, superset approximation of gen
 - Subset approximation of both
 - Superset approximation of both
- Which approximation is suitable depends on the intended use of analysis results

Solving Dataflow Equations

- Dataflow equations are recursive
- Need to compute so-called *fixpoints*, to solve these equations
- Fixpoint computations uses an interative procedure
 - $out^0 = \phi$
 - outi is computed using the equations by substituting outi-1 for occurrences of out on the rhs
 - Fixpoint is a solution, i.e., $out^i = out^{i-1}$

Computing Fixpoints: Equation for Loop

Rewrite equations using more compact notation, with: J standing for in[S] and I, G, K, and O for in[S1], gen[S1], kill[S1] and out[S1]: $I = J \cup O$. $T = T \cup \emptyset$ $O = G \cup (I - K)$ Letting $I^{o} = O^{o} = \phi$, we have: $O^1 = \mathbf{G} \cup (\mathbf{I} - \mathbf{K}) = \mathbf{G}$ $I^{1} = J$ $\overline{O^2} = \overline{G} \cup (\underline{I^2} - \overline{K}) = \overline{G} \cup (J - K)$ $I^2 = J \cup O^1 = J \cup G$ $O^3 = G \cup (I^2 - K)$ $J_3 = .1 \cup (0^2)$ $= J \cup G \cup (J - K)$ $= G \cup (J \cup \mathcal{G} - K)$ $= J \cup G = I^2$ $= G \cup (J - K) = O^2$ (Note that for all sets A and B, A U (A-B) = A, and for all sets A, B and C, A U (A U C -B) = A U (C-B).) Thus, we have a fixpoint. $\overline{1} = G_1 \cup G_2 \cup G_3 - K_4$ = JU

Use-Definition Chains

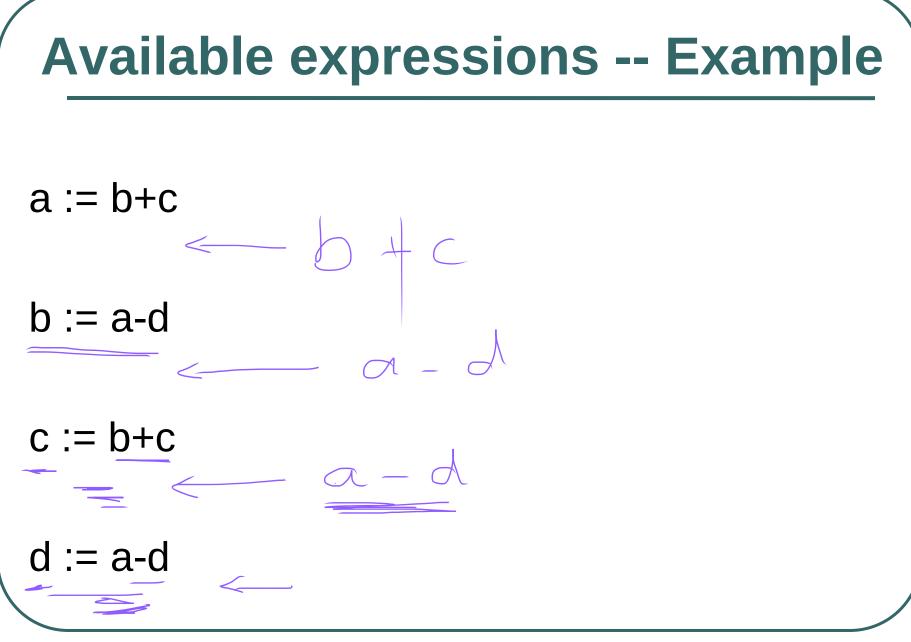
- Convenient way to represent reaching definition information
- ud-chain for a variable links each use of the variable to its reaching definitions
 - One list for each use of a variable

X = Y + Z

x = y - z

Available Expressions

- An expression **e** is available at point **p** if
 - every path to p evaluates e
 - none of the variables in *e* are assigned after last computation of *e*
- A block kills e if it assigns to some variable in e and does not recompute e.
- A block generates e if it computes e and doesn't subsequently assign to variables in e
- *Exercise:* Set up data-flow equations for available expressions. Give an example use for which your equations are sound, and another example for which they aren't



Live Variable Analysis

- A variable x is *live* at a program point p if the value of x is used in some path from p
- Otherwise, **x** is *dead*.
- Storage allocated for dead variables can be freed or reused for other purposes.
- in[B] = use[B] ∪ (out[B] def[B])
- out[B] = U in[S], for S a successor of B
- Equation similar to reaching definitions, but the role of in and out are interchanged

Def-Use Chains

- du-chain links the definition of a variable with all its uses
 - Use of a definition of a variable x at a point p implies that there is a path from this definition to p in which there are no assignments to x
- du-chains can be computed using a dataflow analysis similar to that for live variables

Optimizations and Related Analyses

- Common subexpression elimination
 - Available expressions
- Copy propagation
 - In every path that reaches a program point *p*, the variables
 x and *y* have identical values
- Detection of loop-invariant computation
 - Any assignment x := e where the definition of every variable in e occurs outside the loop.
- Code reordering: A statement x := e can be moved
 - earlier before statements that (a) do not use x, (b) do not assign to variables in e
 - later after statements that (a) do not use x, (b) do not assign to variables in e

Difficulties in Analysis

• Procedure calls

Aliasing

Difficulties in Analysis

Procedure calls

- may modify global variables
 - potentially kill all available expressions involving global variables
 - modify reaching definitions on global variables

Aliasing

- Create ambiguous definitions
- a[i] = a[j] --- here, i and j may have same value, so assignment to a[i] can potentially kill a[j]
 - *p = q + r --- here, p could potentially point to q, r or any other variable
 - creates ambiguous redefinition for all variables in the program!