
 1

Low-level Code Generation
 Assembly code generation

• Register allocation

• Instruction selection

 Machine code generation
• Instruction encoding

• Linker and loader

• Relocatable code

• Defer assignment of locations for static objects (code, 
variables) to linking phase

• Static linking

• Dynamic linking



 2

Machine code generation (contd.)
• Position-independent code (PIC)

• Can be shared by different processes that map a library to 
different locations

• Code does not assume knowledge of memory location of its 
code or variables

• Symbol tables

• Often, code that is shipped has all symbols “stripped off”

• For libraries, need to maintain a minimal amount of symbol info



 3

Register Allocation: Factors
 Special-purpose registers

• Stack pointer, Base pointer, Instruction pointer, ...

• Reserved for specific uses across most code

• Register allocation deals with general-purpose registers

 Application/binary interface requirements
• Caller- Vs Callee-save registers

• Caller-save registers need to be explicitly saved by the 
caller before every procedure call, and restored after

• Callee-save registers have to be saved before use by 
every function, and restored if used.

 Some (most) instructions may operate only on 
register operands



 4

Register Allocation: Simple Strategies

1.Load a register from memory before each 
operation, store immediately afterwards
• Too inefficient

2.Avoid load/store's within a basic block
 Load registers at entry of a BB, and store at its end. 
 Fails to discriminate between loops and other Bbs
 May require too many registers

• “Global” register allocation
 Consider uses across Bbs
 Even more “pressure” on registers ...



 5

Global Register Allocation
 Model cost of instructions

• Cost of fetching

• On modern processors, fetching costs can be ignored to a 
certain extent due to the use of dedicated pipelines for 
instruction fetching/decoding, plus branch prediction etc.

• Cost of memory access

• For loading registers

• For saving registers

• For accessing memory (in case of instructions that accept 
memory operands)

• Take into account loops

• e.g., treat the cost of non-loop operations to be zero



 6

Register usage counts
 Use(x) = number of uses of variable x (before 

reassignment) within a block, plus 2 if x is live at the 
end of the loop
• Use registers to hold variables with highest use count

 If there are nested loops, allocate registers for 
innermost loop, and then allocate remaining 
registers to outer loops
• Alternatively, reuse registers used in inner loops in outer 

loops by saving/restoring registers

• Avoid unnecessary save/restores by analyzing across BBs 
to find variables used in inner as well as outer loops.



 7

Working with fixed number of Registers

 Can be modeled as a graph-coloring problem
• Allocate a symbolic register for each variable

• Construct a register-interference graph (RIG)

• Edge between two symbolic registers if one is live at the 
point where the other is assigned

• You can use N registers if RIG is N-colorable

• i.e., there is a way to assign N colors to graph nodes such 
that neighboring nodes have different colors

R

R

R

R

R

R



 8

Graph-coloring (contd.)
 Graph-coloring problem is NP-complete

• But good heuristics exist:

• Eliminate all nodes that have less than degree N

• Eliminating one node will reduce the degree of nodes 
connected to it

• Color for the eliminated node can be chosen to be one of 
those that is not assigned to any of its neighbors

• If all nodes have degree >= N, pick one to “spill,” i.e., save 
to memory and restore later

• Pick registers that have least cost savings

• Avoid spills in inner loops



R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R







 12

Instruction Selection
 Instruction selection is a complex task, especially 

when considering modern processors with a large 
number of instructions and addressing modes

 Many semantically equivalent instructions 
sequences may perform the same desired task
• How to select the “minimal cost” sequence?

 Ideally, one does not have to hand-code a code 
generator, but have it be generated from 
specifications!
• Instruction selection by tree-rewriting 

• Initially, the tree represents generated intermediate code

R



  

Target code generation in GCC
 gcc uses machine descriptions to automatically 

generate code for target machine
• Enables gcc to support numerous target machines, 

with greatly reduced programmer effort
 machine descriptions specify:

• memory addressing (bit, byte, word, big-endian, ...)

• registers (how many, whether general purpose or 
not, ...)

• stack layout

• parameter passing conventions

• semantics of instructions

• …

R

R

R

R

R

R



 14

Instruction Specification
 For each instruction in target language, specify: 

• Assembly representation of target machine instructions

• Instruction parameters include registers and constants

• Its semantics in the intermediate language

• Parameterized in terms of registers and constants in the 
target instruction

• Specify input operands as well as the location where the 
result is stored

• Cost of executing the instruction

• Additional constraints on applicability of instruction

• e.g., a certain constant must be at most 8 bits

R

R

R

R

R

R

R

R

R



 15

Code generation by rewriting
 Represent intermediate code generated by the compiler as a 

tree, and use rewriting using the rules in the instruction 
specification

 Trees can represent expressions as well as sequence of 
statements

• Introduce a sequencing operation to represent sequencing

• Don't force sequencing of unrelated statements, or else the code 
generator won't be able to choose evaluation orders that lead to 
more efficient code. 

• Example: a=b+5; c=d+5; e=a+b

• More efficient if c=d+5 is moved later, as it would allow a and b 
to continue to be in registers while evaluating e=a+b

R

R

R

R

R

R

R

R



  

GCC target code generation
 gcc uses intermediate code called RTL, which 

uses a LISP-like syntax
• Actually, gcc uses multiple intermediate languages, 

with RTL being the lowest level among them
 semantics of each instruction is also specified 

using RTL:
• movl (r3), @8(r4) 

     (set (mem: SI (plus: SI (reg: SI 4) (const_int 8)))
            (mem: SI (reg: SI 3)))

 gcc code generation = selecting a low-cost 
instruction sequence that has the same 
semantics as the intermediate code

R

R

R

R

R

R

R

R



 17

Instruction Specification

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R



 18

Instruction Selection Example
 Intermediate code for a[i] = b+1
 Rewrite tree repeatedly using rules corresponding to instruction 

specifications until you get to a single node tree.
 Result

  LD    R0, #a
  ADD R0, R0, SP
  ADD R0, R0, i[SP]
  LD    R1, b
  INC  R1
  ST    *R0, R1

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R



  

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R



 20

Optimal Code Generation
 Some intermediate operations may not have 

equivalent instructions
• e.g.,“add R0, R0, M” versus “ld R1, M; add R0, R0, R1”

 Multiple rules may match the same node
• Cost of evaluation may hinge on which match is chosen

• Example: “inc R0” versus “add R0, 1”

 The order of rewriting can change the cost
• Mainly due to selection of registers, and based on which 

intermediate results remain in registers as opposed to 
being stored in memory.

R

R



 21

Optimal Code Generation
 But, dynamic programming algorithms for optimal 

code generation exist under reasonable 
assumptions
• Optimal code for E1 op E2 will contain optimal code for 

evaluating E1 and optimal code for evaluating E2

• Dynamic programming algorithm tries to construct the 
optimal code bottom-up: from E1 and E2's optimal 
codes, build optimal code for E1 op E2

• Dynamic programming algorithm iterates over

• number of registers used for operand evaluation

• order of evaluation of operand (when permissible)











 26

Dynamic Programming Algorithm
 For each node n in tree, compute C[n][i] which represents the minimum 

cost for evaluating the subtree rooted at n using at most i registers, for 0 
<= i <= k (# of registers in the target architecture)

 The operands for evaluating the operation at n may differ, depending on 
the matching instruction

 While evaluating operands of n, we may use:

• All i registers for evaluating each operand, but this requires evaluation 
results to be stored in memory in order to free up registers for evaluating 
other operands

• Use less than i registers so that operands can be retained in registers

• We prefer an order of evaluation that minimizes the number of registers that 
need to be saved to memory

 For the root node r, pick how many registers to use (may be k)
 Generate instructions based on the choices at each node that result in 

the least cost for C[r][k] 

   



 27

Target 
Instructions

Optimal Code

Illustration of Dynamic Programming Algorithm


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27



