
OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

OOP (Object Oriented Programming)

So far the languages that we encountered treat data and computation separately.

In OOP, the data and computation are combined into an “object”.

1 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Benefits of OOP

more convenient: collects related information together, rather than distributing it.

Example: C++ iostream class collects all I/O related operations together into one central

place.

Contrast with C I/O library, which consists of many distinct functions such as getchar,

printf, scanf, sscanf, etc.

centralizes and regulates access to data.

If there is an error that corrupts object data, we need to look for the error only within its

class

Contrast with C programs, where access/modification code is distributed throughout the

program

2 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Benefits of OOP (Continued)

Promotes reuse.
by separating interface from implementation.

We can replace the implementation of an object without changing client code.
Contrast with C, where the implementation of a data structure such as a linked list is integrated
into the client code

by permi�ing extension of new objects via inheritance.
Inheritance allows a new class to reuse the features of an existing class.
Example: define doubly linked list class by inheriting/ reusing functions provided by a singly
linked list.

3 / 55

R

R

R

R

R

R

R

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Encapsulation & Information hiding

Encapsulation

centralizing/regulating access to data

Information hiding

separating implementation of an object from its interface

These two terms overlap to some extent.

4 / 55

R

R

R

R

R

R

R

R

R

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Classes and Objects

Class is an (abstract) type
includes data

class variables (aka static variables)
. shared (global) across all objects of this class

instance variables (aka member variables)
. independent copy in each object
. similar to fields of a struct

and operations
member functions

. always take object as implicit (first) argument
class functions (aka static functions)

. don’t take an implicit object argument

Object is an instance of a class
variable of class type

5 / 55

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Access to Members

Access to members of an object is regulated in C++ using three keywords
Private:

Accessibly only to member functions of the class
Can’t be directly accessed by outside functions

Protected:
allows access from member functions of any subclass

Public:
can be called directly by any piece of code.

6 / 55

R

R

R

R

R

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Member Function

Member functions are of two types

statically dispatched

dynamically dispatched.

The dynamically dispatched functions are declared using the keyword “virtual” in
C++

all member function functions are virtual in Java

7 / 55

R

R

R

R

R

R

R

R

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

C++

Developed as an extension to C

by adding object oriented constructs originally found in Smalltalk (and Simula67).

Most legal C programs are also legal C++ programs

“Backwards compatibility” made it easier for C++ to be accepted by the programming

community

. . . but made certain features problematic (leading to “dirty” programs)

Many of C++ features have been used in Java

Some have been “cleaned up”

Some useful features have been le� out

8 / 55

R

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Example of C++ Class

A typical convention is C++ is to make all data members private. Most member
functions are public.
Consider a list that consists of integers. The declaration for this could be :
class IntList {

private:

int elem; // element of the list

IntList *next ; // pointer to next element

public:

IntList (int first); //"constructor"

~IntList () ; // "destructor".

void insert (int i); // insert element i

int getval () ; // return the value of elem

IntList *getNext (); // return the value of next

}

9 / 55

R

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Example of C++ Class (Continued)

We may define a subclass of IntList that uses doubly linked lists as follows:
class IntDList: IntList {

private:

IntList *prev;

public:

IntDlist(int first);

// Constructors need to be redefined

~IntDlist();

// Destructors need not be redefined, but

// typically this is needed in practice.

// Most operations are inherited from IntList.

// But some operations may have to be redefined.

insert (int);

IntDList *prev();

}

10 / 55

R

R

R

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

C++ and Java: The Commonalities

Classes, instances (objects), data members (fields) and member functions (methods).

Overloading and inheritance.

base class (C++) → superclass (Java)

derived class (C++) → subclass (Java)

Constructors

Protection (visibility): private, protected and public

Static binding for data members (fields)

11 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

A C++ Primer for Java Programmers

Classes, fields and methods:
Java: C++:

class A extends B {

private int x;

protected int y;

public int f() {

return x;

}

public void print() {

System.out.println(x);

}

}

class A : public B {

private: int x;

protected: int y;

public: int f() {

return x;

}

void print() {

std::cout << x << std::endl;

}

}
12 / 55

R

R

R

R

R

R

R

R

R

R

R

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

A C++ Primer for Java Programmers

Declaring objects:
In Java, the declaration A va declares va to be a reference to object of class A.

Object creation is always via the new operator

In C++, the declaration A va declares va to be an object of class A.

Object creation may be automatic (using declarations) or via new operator:

A *va = new A;

13 / 55

R

R

R

R

R

R

R

R

R

R

R

R

R

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Objects and References

In Java, all objects are allocated on the heap; references to objects may be stored in
local variables.

In C++, objects are treated analogous to C structs: they may be allocated and
stored in local variables, or may be dynamically allocated.

Parameters to methods:

Java distinguishes between two sets of values: primitives (e.g. ints, floats, etc.) and

objects (e.g String, Vector, etc.

Primitive parameters are passed to methods by value (copying the value of the argument

to the formal parameter)

Objects are passed by reference (copying only the reference, not the object itself).

C++ passes all parameters by value unless specially noted.
14 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Type

Apparent Type: Type of an object as per the declaration in the program.

Actual Type: Type of the object at run time.

Let Test be a subclass of Base. Consider the following Java program:
Base b = new Base();

Test t = new Test();

...

b = t;

Variable Apparent type of

object referenced

b Base

t Test
. . . throughout the scope of b and t’s declarations

15 / 55

R

R

R

R

R

R

R

R

R

R

R

R

R

R

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Type (Continued)

Let Test be a subclass of Base. Consider the following Java program fragment:
Base b = new Base();

Test t = new Test();

...

b = t;

Variable Program point Actual type of

object referenced

b before b=t Base

t before b=t Test

b a�er b=t Test

t a�er b=t Test

16 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Type (Continued)

Things are a bit di�erent in C++, because you can have both objects and object
references. Consider the case where variables are objects in C++:
Base b();

Test t();

...

b = t;

Variable Program point Actual type of

object referenced

b before b=t Base

t before b=t Test

b a�er b=t Base

t a�er b=t Test
17 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Type (Continued)

Things are a bit di�erent in C++, because you can have both objects and object
references. Consider the case where variables are pointers in C++:
Base *b = new Base();

Test *t = new Test();

...

b = t;

Variable Program point Actual type of

object referenced

b before b=t Base*

t before b=t Test*

b a�er b=t Test*

t a�er b=t Test*
18 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Subtype

A is a subtype of B if every object of type A is also a B, i.e., every object of type A
has

(1) all of the data members of B

(2) supports all of the operations supported by B, with the operations taking the same

argument types and returning the same type.

(3) AND these operations and fields have the “same meaning” in A and B.

It is common to view data field accesses as operations in their own right. In that
case, (1) is subsumed by (2) and (3).

19 / 55

R

R

R

R

R

R

R

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Subtype Principle

A key principle :

“For any operation that expects an object of type T, it is acceptable to supply object of

type T’, where T’ is subtype of T.”

The subtype principle enables OOL to support subtype polymorphism:

client code that accesses an object of class C can be reused with objects that belong to

subclasses of C.

20 / 55

R

R

R

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Subtype Principle (Continued)

The following function will work with any object whose type is a subtype of IntList.
void q (IntList &i, int j) {

...

i.insert(j) ;

}

Subtype principle dictates that this work for IntList and IntDList.

This must be true even is the insert operation works di�erently on these two types.

Note that use of IntList::insert on IntDList object will likely corrupt it, since the prev

pointer would not be set.

21 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Subtype Principle (Continued)

Hence, i.insert must refer to

IntList::insert when i is an IntList object, and

IntDList::insert function when i is an IntDList.

Requires dynamic association between the name “insert” and the its
implementation.

achieved in C++ by declaring a function be virtual.

definition of insert in IntList should be modified as follows: virtual void

insert(int i);
all member functions are by default virtual in Java, while they are nonvirtual in C++

equivalent of “virtual” keyword is unavailable in Java.

22 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Reuse of Code

Reuse achieved through subtype polymorphism
the same piece of code can operate on objects of di�erent type, as long as:

Their types are derived from a common base class
Code assumes only the interface provided by base class.

Polymorphism arises due to the fact that the implementation of operations may
di�er across subtypes.

23 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Reuse of Code (Continued)

Example:
Define a base class called DrawableObject

supports draw() and erase().
DrawableObject just defines an interface

no implementations for the methods are provided.
this is an abstract class — a class with one or more abstract methods (declared but not
implemented).
also an interface class — contains only abstract methods subtypes.

24 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Reuse of Code: example (Continued)

The hierarchy of DrawableObject may look as follows:

DrawableObject

BitMaps

GIFJPEG

GeometricShapes

OpenFigures

...

ClosedFigures

Ellipse

...Circle

Polygon

TriangleRectangle

Square

25 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Reuse of Code: example (Continued)

The subclasses support the draw() and erase() operation supported by the base class.

Given this se�ing, we can implement the redraw routine using the following code
fragment:

void redraw(DrawableObject* objList[], int size){

for (int i = 0; i < size; i++)

objList[i]->draw();

}

26 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Reuse of Code: example (Continued)

objList[i].draw will call the appropriate method:

for a square object, Square::draw

for a circle object, Circle:draw

The code need not be changed even if we modify the inheritance hierarchy by
adding new subtypes.

27 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Reuse of Code: example (Continued)

Compare with implementation in C:
void redraw(DrawableObject *objList[], int size) {

for (int i = 0; i < size; i++){

switch (objList[i]->type){

case SQUARE: square_draw((struct Square *)objList[i]);

break;

case CIRCLE: circle_draw((struct Circle *)objList[i]);

break;

........

default:

}

}

}

Di�erences:
no reuse across types (e.g., Circle and Square)

need to explicitly check type, and perform casts

will break when new type (e.g., Hexagon) added 28 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Reuse of Code (Continued)

Reuse achieved through subtype polymorphism
the same piece of code can operate on objects of di�erent type, as long as:

Their types are derived from a common base class
Code assumes only the interface provided by base class.

Polymorphism arises due to the fact that the implementation of operations may
di�er across subtypes.

29 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Dynamic Binding

Dynamic binding provides overloading rather than parametric polymorphism.

the draw function implementation is not being shared across subtypes of

DrawableObject, but its name is shared.

Enables client code to be reused

To see dynamic binding more clearly as overloading:

Instead of a.draw(),

view as draw(a)

30 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Reuse of Code (Continued)

Subtype polymorphism = function overloading

Implemented using dynamic binding

i.e., function name is resolved at runtime, rather than at compile time.

Conclusion: just as overloading enables reuse of client code, subtype polymorphism
enables reuse of client code.

31 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Inheritance

language mechanism in OO languages that can be used to implement subtypes.

The notion of interface inheritance corresponds conditions (1), (2) and (3) in the
definition of Subtype

but provision (3) is not checked or enforced by a compiler.

32 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Subtyping & interface inheritance

The notion of subtyping and interface inheritance coincide in OO languages.
OR

Another way to phrase this is to say that “interface inheritance captures an ’is-a’
relationship”

OR

If A inherits B’s interface, then it must be the case that every A is a B.

33 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Implementation Inheritance

If A is implemented using B, then there is an implementation inheritance
relationship between A and B.

However A need not support any of the operations supported by B

OR

There is no is-a relationship between the two classes.

Implementation inheritance is thus “irrelevant” from the point of view of client code.

Private inheritance in C++ corresponds to implementation-only inheritance, while
public inheritance provides both implementation and interface inheritance.

34 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Implementation Inheritance (Continued)

Implementation-only inheritance is invisible outside a class

not as useful as interface inheritance.

can be simulated using composition.

class B{

op1(...)

op2(...)

}

class A: private class B {

op1(...) /* Some operations supported by B may also be supported in

A (e.g., op1), while others (e.g., op2) may not be */

op3(...) /* New operations supported by A */

}
35 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Implementation Inheritance (Continued)

The implementation of op1 in A has to explicitly invoke the implementation of op1
in B:

A::op1(...){

B::op1(...)

}

So, we might as well use composition:

class A{

B b;

op1(...) { b.op1(...) }

op3(...)...

}
36 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Polymorphism

“The ablilty to assume di�erent forms”

A function/method is polymorphic if it can be applied to values of many types.

Class hierarchy and inheritance provide a form of polymorphism called subtype

polymorphism.

As dicussed earlier, it is a form of overloading.

Overloading based on the first argument alone.

Overloading resolved dynamically rather than statically.

Polymorphic functions increase code reuse.

37 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Polymorphism (Continued)

Consider the following code fragment: (x < y)? x : y

“Finds the minimum of two values”.

The same code fragment can be used regardless of whether x and y are:

integers

floating point numbers

objects whose class implements operator “<”.

Templates li� the above form of polymorphism (called parametric polymorphism) to
functions and classes.

38 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Parametric polymorphism Vs Interface Inheritance

In C++,

template classes support parametric polymorphism

public inheritance support interface + implementation inheritance.

Parametric polymorphism is more flexible in many cases.
template class List<class ElemType>{

private:

ElemType *first; List<ElemType> *next;

public:

ElemType *get(); void insert(ElemType *e);

}

Now, one can use the List class with any element type:
void f(List<A> alist, List blist){

A a = alist.get();

B b = blist.get();

}
39 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Parametric polymorphism Vs Inheritance (Continued)

If we wanted to write a List class using only subtype polymorphism:

We need to have a common base class for A and B

e.g., in Java, all objects derived from base class “Object”
class AltList{

private:

Object first; AltList next;

public:

Object get(); void insert(Object o);

}

void f(AltList alist, AltList blist) {

A a = (A)alist.get();

B b = (B)blist.get();

}

40 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Parametric polymorphism Vs Interface Inheritance

(Continued)

Note: get() returns an object of type Object, not A.

Need to explicitly perform runtime casts.

type-checking needs to be done at runtime, and type info maintained at runtime

potential errors, as in the following code, cannot be caught at compile time
List alist, blist;

A a; A b;//Note b is of type A, not B

alist.insert(a);

blist.insert(b);

f(alist, blist);//f expects second arg to be list of B’s, but we are giving a list of A’s.

41 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Overloading, Overriding, and Virtual Functions

Overloading is the ability to use the same function NAME with di�erent arguments
to denote DIFFERENT functions.

In C++

void add(int a, int b, int& c);

void add(float a, float b, float& c);

Overriding refers to the fact that an implementation of a method in a subclass
supersedes the implementation of the same method in the base class.

42 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Overloading, Overriding, and Virtual Functions (Continued)

Overriding of non-virtual functions in C++:
class B {

public:

void op1(int i) { /* B’s implementation of op1 */ }

}

class A: public class B {

public:

void op1(int i) { /* A’s implementation of op1 */ }

}

main() {

B b; A a;

int i = 5; b.op1(i); // B’s implementation of op1 is used

a.op1(i); // Although every A is a B, and hence B’s implementation of

// op1 is available to A, A’s definition supercedes B’s defn,

// so we are using A’s implementation of op1.

((B)a).op1(); // Now that a has been cast into a B, B’s op1 applies.

a.B::op1(); // Explicitly calling B’s implementation of op1

}
43 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Overloading, Overriding, and Virtual Functions (Continued)

In the above example the choice of B’s or A’s version of op1 to use is based on
compile-time type of a variable or expression. The runtime type is not used.

Overloaded (non-member) functions are also resolved using compile-time type
information.

44 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Overriding In The Presence Of Virtual Function
class B {

public:

virtual void op1(inti){/* B’s implementation of op1 */ }

}

class A: public class B {

public:

void op1(int i) {// op1 is virtual in base class, so it is virtual here too

/* A’s implementation of op1 */ }

}

main() {

B b; A a;

int i = 5;

b.op1(i); // B’s implementation of op1 is used

a.op1(i); // A’s implementation of op1 is used.

((B)a).op1(); // Still A’s implementation is used

a.B::op1(); // Explicitly requesting B’s definition of op1

}

45 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Overriding In The Presence Of Virtual Function (Continued)

void f (B x , int i) {
x . op1 (i) ;

}

which may be invoked as follows:

B b ;
A a ;
f (b , 1) ; / / f uses B ’ s op1

f (a , 1) ; / / f still uses B ’ s op1 , not A ’ s

void f (B& x , int i) {
x . op1 (i) ;

}

which may be invoked as follows:

B b ;
A a ;
f (b , 1) ; / / f uses B ’ s op1

f (a , 1) ; / / f uses A ’ s op1

46 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Function Template

Declaring function templates:

template <typename T>

T min (T x, T y) {

return (x < y)? x : y;

}

typename parameter can be name of any type (e.g. int, long, Base, . . .)

Using template functions:

z = min(x, y)

Compiler fills out the template’s typename parameter using the types of arguments.

Can also be explicitly used as: min<float>(x, y)

47 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Class Templates

Of great importance in implementing data structures (say list of elements, where all
elements have to be of the same type).

Java does not provide templates:

Some uses of templates can be replaced by using Java interfaces.

Many other uses would require “type casting”

e.g.:

Iterator e = ...

Int x = (Integer) e.next();

Inherently dangerous since it skirts around compile-time type checking.

48 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Dynamic Binding

A function f may take parameters of class C1

The actual parameter passed into the function may be of class C2 that is a subclass
of C1

Methods invoked on this parameter within f will be the member function supported
by C2, rather than C1

To do this, we have to identify the appropriate member function at runtime, based
on the actual type C2 of the parameter, and not the (statically) determined type C1

49 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Dynamic Binding (Continued)

Dynamic binding provides overloading rather than parametric polymorphism.
void q (IntList &i, int j) {

...

i.insert(j) ;

}

the insert function implementation is not being shared across subtypes of IntList, but

its name is shared.

enables client code to be reused

To see dynamic binding as overloading, we need to eliminate the “syntactic sugar”
used for calling member functions in OOL:

Instead of viewing it as i.insert(...), we would think of it as a simple function

insert(i,...) that explicitly takes an object as an argument.
50 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Implementation of OO-Languages

Data
nonstatic data (aka instance variables) are allocated within the object

the data fields are laid out one a�er the other within the object
alignment requirements may result in “gaps” within the object that are unused
each field name is translated at compile time into a number that corresponds to the o�set
within the object where the field is stored

static data (aka class variables) are allocated in a static area, and are shared across all
instances of a class.

Each class variable name is converted into an absolute address that corresponds to the location
within the static area where the variable is stored.

51 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Implementation of Dynamic Binding

All virtual functions corresponding to a class C are put into a virtual method table
(VMT) for class C

Each object contains a pointer to the VMT corresponding to the class of the object

This field is initialized at object construction time

Each virtual function is mapped into an index into the VMT. Method invocation is
done by

access the VMT table by following the VMT pointer in the object

look up the pointer for the function within this VMT using the index for the member

function

52 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Implementation of Inheritance

Key requirement to support subtype principle:

a function f may expect parameter of type C1, but the actual parameter may be of type

C2 that is a subclass of C1
the function f must be able to deal with an object of class C2 as if it is an object of class C1

this means that all of the fields of C2 that are inherited from C1, including the VMT pointer,
must be laid out in the exact same way they are laid out in C1
all functions in the interface of C1 that are in C2 must be housed in the same locations within
the VMT for C2 as they are located in the VMT for C1

53 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Impact of subtype principle on Implementation (Continued)

In order to satisfy the constraint that VMT (Virtual Method Table) ptr appear at the
same position in objects of type A and B, it is necessary for the data field f in A to
appear a�er the VMT field.

A couple of other points:

non-virtual functions are statically dispatched, so they do not appear in the VMT table

when a virtual function f is NOT redefined in a subclass, the VMT table for that class is

initialized with an entry to the function f defined its superclass.

54 / 55

OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Summary

The key properties of OOL are:

encapsulation

inheritance+dynamic binding

55 / 55

	OOP Introduction
	Type & Subtype
	Inheritance
	Overloading and Overriding
	Template
	Dynamic Binding
	OO-language Implementation
	Summary

