
Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

What is a Type?

A set of values

Together with a set of operations on these values that possess certain properties

1 / 38

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

What is a Type?

A set of values

Together with a set of operations on these values that possess certain properties

2 / 38

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Topics

Data types in modern languages

simple and compound types

Type declaration

Type inference and type checking

Type equivalence, compatibility, conversion and coercion

Strongly/Weakly/Un-typed languages

Static Vs Dynamic type checking

3 / 38

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Simple Types

Predefined

int, float, double, etc in C

All other types are constructed, starting from predefined (aka primitive) types
Enumerated:

enum colors {red, green, blue} in C
type colors = Red|Green|Blue in OCAML

4 / 38

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Detour: Evolution of Programming Languages

5 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Compound Types

Types constructed from other types using type constructors

Cartesian product (*)

Function types (→)

Union types (∪)

Arrays

Pointers

Recursive types

6 / 38

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Cartesian Product

Let I represent the integer type and R represent real type.

The cross product I × R is defined in the usual manner of product of sets, i.e.,
I × R = {(i, r)|i ∈ I, r ∈ R}

Cartesian product operator is non-associative.

7 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Labeled Product types

In Cartesian products, components of tuples don’t have names.

Instead, they are identified by numbers.

In labeled products each component of a tuple is given a name.

Labeled products are also called records (a language-neutral term)

8 / 38

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Labeled Product types (Continued)

struct is a term that is specific to C and C++

struct t {int a;float b;char *c;}; in C

9 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Function Types
T1 → T2 is a function type

Type of a function that takes one argument of type T1 and returns type T2

OCAML supports functions as first class values.

They can be created and manipulated by other functions.

In imperative languages such as C, we can pass pointers to functions, but this does not o�er
the same level of flexibility.

E.g., no way for a C-function to dynamically create and return a pointer to a function;
rather, it can return a pointer to an EXISTING function

Recent versions of C++ (as well Python, JavaScript and recent Java versions) support
dynamically created functions (aka lambda abstractions)

See Functional Programming for Imperative Programmers for a discussion of functional
programming features in C++.

10 / 38

http://seclab.cs.sunysb.edu/sekar/cse504/ln/fpForImp.pdf
R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Union types

Union types correspond to set unions, just like product types corresponded to
Cartesian products.

-> operator is right-associative, so we read the type as float -> (float -> float).

Unions can be tagged or untagged. C/C++ support only untagged unions:
union v {

int ival;

float fval;

char cval;

};

11 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Tagged Unions

In untagged unions, there is no way to ensure that the component of the right type
is always accessed.

E.g., an integer value may be stored in the above union, but due to a programming error,

the fval field may be accessed at a later time.

fval doesn’t contain a valid value now, so you get some garbage.

With tagged unions, the compiler can perform checks at runtime to ensure that the
right components are accessed.

Tagged unions are NOT supported in C/C++.

12 / 38

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Tagged Unions (Continued)

Pascal supports tagged unions using VARIANT RECORDs

RECORD

CASE b: BOOLEAN OF

TRUE: i: INTEGER; |

FALSE: r: REAL END

END

END

Tagged union is also called a discriminated union

13 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Array types

Array construction is denoted by

array(<range>, <elememtType>).

C-declaration

int a[5];

defines a variable a of type array(0-4, int)

A declaration

union tt b[6][7];

declares a variable b of type array(0-4, array(0-6, union �))

We may not consider range as part of type

14 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Pointer types

A pointer type will be denoted using the syntax

ptr(<elementType>)

where <elementType> denote the types of the object pointed by a pointer type.

The C-declaration

char *s;

defines a variable s of type ptr(char)

A declaration

int (*f)(int s, float v)

defines a (function) pointer of type ptr(int*float→ int)

15 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Recursive types

Recursive type: a type defined in terms of itself.

Example in C:
struct IntList {

int hd;

intList tl;

};

Does not work:

This definition corresponds to an infinite list.

There is no end, because there is no way to capture the case when the tail has the value

“nil”

16 / 38

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Recursive types (Continued)

Need to express that tail can be nil or be a list.

Try: variant records:
TYPE charlist = RECORD

CASE IsEmpty: BOOLEAN OF

TRUE: /* empty list */ |

FALSE:

data: CHAR;

next: charlist;

END

END

Still problematic: Cannot predict amount of storage needed.

17 / 38

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Recursive types (Continued)

Solution in typical imperative languages:

Use pointer types to implement recursive type:
struct IntList {

int hd;

IntList *tl;

};

Now, tl can be:

a NULL pointer (i.e., nil or empty list)

or point to a nonempty list value

Now, IntList structure occupies only a fixed amount of storage

18 / 38

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Recursive types In OCAML

Direct definition of recursive types is supported in OCAML using type declarations.

Use pointer types to implement recursive type:
type intBtree =

LEAF of int

| NODE of int * intBtree * intBtree;;

type intBtree = LEAF of int | NODE of int * intBtree * intBtree

We are defining a binary tree type inductively:

Base case: a binary tree with one node, called a LEAF

Induction case: construct a binary tree by constructing a new node that sores an integer

value, and has two other binary trees as children

19 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Polymorphism

Ability of a function to take arguments of multiple types.

The primary use of polymorphism is code reuse.

Functions that call polymorphic functions can use the same piece of code to operate
on di�erent types of data.

20 / 38

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Overloading (adhoc polymorphism)

Same function NAME used to represent di�erent functions

implementations may be di�erent

arguments may have di�erent types

Example:

operator ’+’ is overloaded in most languages so that they can be used to add integers or

floats.

But implementation of integer addition di�ers from float addition.

Arguments for integer addition or ints, for float addition, they are floats.

Any function name can be overloaded in C++, but not in C.

All virtual functions are in fact overloaded functions.

21 / 38

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Polymorphism & Overloading

Parametric polymorphism:

same function works for arguments of di�erent types

same code is reused for arguments of di�erent types.

allows reuse of “client” code (i.e., code that calls a polymorphic function) as well

Overloading:

due to di�erences in implementation of overloaded functions, there is no code reuse in

their implementation

but client code is reused

22 / 38

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Parametric polymorphism in C++

Example:
template <class C>

C min(const C* a, int size, C minval) {

for (int i = 0; i < size; i++)

if (a[i] < minval)

minval = a[i];

return minval;

}

Note: same code used for arrays of any type.

The only requirement is that the type support the “<” and “=” operations

The above function is parameterized wrt class C

Hence the term “parametric polymorphism”.

Unlike C++, C does not support templates.
23 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Code reuse with Parametric Polymorphism

With parametric polymorphism, same function body reused with di�erent types.

Basic property:

does not need to "look below" a certain level

E.g., min function above did not need to look inside each array element.

Similarly, one can think of length and append functions that operate on linked lists of all

types, without looking at element type.

24 / 38

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Code reuse with overloading

No reuse of the overloaded function

there is a di�erent function body corresponding to each argument type.

But client code that calls a overloaded function can be reused.

Example

Let C be a class, with subclasses C1,...,Cn.

Let f be a virtual method of class C

We can now write client code that can apply the function f uniformly to elements of an

array, each of which is a pointer to an object of type C1,...,Cn.

25 / 38

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Example

Example:
void g(int size, C *a[]) {

for (int i = 0; i < size; i++)

a[i]->f(...);

}

Now, the body of function g (which is a client of the function f) can be reused for
arrays that contain objects of type C1 or C2 or ... or Cn,or even a mixture of these
types.

26 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Type Equivalence

Structural equivalence: two types are equivalent if they are defined by identical
type expressions.

array ranges usually not considered as part of the type

record labels are considered part of the type.

Name equivalence: two types are equal if they have the same name.

Declaration equivalence: two types are equivalent if their declarations lead back to
the same original type expression by a series of redeclarations.

27 / 38

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Type Equivalence (contd.)

Structural equivalence is the least restrictive

Name equivalence is the most restrictive.

Declaration equivalence is in between

TYPE t1 = ARRAY [1..10] of INTEGER; VAR v1: ARRAY [1..10] OF INTEGER;

TYPE t2 = t1; VAR v3,v4: t1; VAR v2: ARRAY [1..10] OF INTEGER;
Structurally equivalent? Declaration equivalent? Name equivalent?

t1,t2 Yes Yes No

v1,v2 Yes No No

v3,v4 Yes Yes Yes

28 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Declaration equivalence

In Pascal, Modula use decl equivalence

In C

Decl equiv used for structs and unions

Structual equivalence for other types.

struct { int a ; float b ;} x ;

struct { int a; float b; }y;

x and y are structure equivalent but not declaration equivalent.
typedef int* intp ;

typedef int** intpp ;

intpp v1 ;

intp *v2 ;

v1 and v2 are structure equivalent.
29 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Type Compatibility

Weaker notion than type equivalence

Notion of compatibility di�ers across operators

Example: assignment operator:

v = expr is OK if <expr> is type-compatible with v.

If the type of expr is a Subtype of the type of v, then there is compatibility.

Other examples:

In most languages, assigning integer value to a float variable is permi�ed, since integer is

a subtype of float.

In OO-languages such as Java, an object of a derived type can be assigned to an object of

the base type.

30 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Type Compatibility (Continued)

Procedure parameter passing uses the same notion of compatibility as assignment

Note: procedure call is a 2-step process
assignment of actual parameter expressions to the formal parameters of the procedure
execution of the procedure body

Formal parameters are the parameter names that appear in the function declaration.

Actual parameters are the expressions that appear at the point of function call.

31 / 38

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Type Checking

Static (compile time)
Benefits

no run-time overhead
programs safer/more robust

Dynamic (run-time)
Disadvantages

runtime overhead for maintaining type info at runtime
performing type checks at runtime

Benefits
more flexible/more expressive

32 / 38

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Examples of Static and Dynamic Type Checking

C++ allows

Upcasts: casting of subclass to superclass (always type-safe)
Downcasts: superclass to subclass (not necessarily type-safe) – but no way to check

since C++ is statically typed.
Actually, runtime checking of downcasts is supported in C++ but is typically not used

due to runtime overhead

Java uses combination of static and dynamic type-checking to catch unsafe casts
(and array accesses) at runtime.

33 / 38

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Type Checking (Continued)

Type checking relies on type compatibility and type inference rules.

Type inference rules are used to infer types of expressions. e.g., type of (a+b)+c is
inferred from type of a, b and c and the inference rule for operator ‘+‘.

Type inference rules typically operate on a bo�om-up fashion.

Example: (a+b)+c

+:float

c:float+:float

b:floata:int

34 / 38

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Type Checking (Continued)

In OCAML, type inference rules capture bo�om-up and top-down flow of type info.

Example of Top-down: let f x y:float*int = (x, y)

f:float*int

y:intx:float

Here types of x and y inferred from return type of f.

Note: Most of the time OCAML programs don’t require type declaration.

But it really helps to include them: programs are more readable, and most important, you

get far fewer hard-to-interpret type error messages.

35 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Strong Vs Weak Typing

Strongly typed language: such languages will execute without producing uncaught
type errors at runtime.

no invalid memory access
no seg fault
array index out of range
access of null pointer

No invalid type casts

Weakly typed: uncaught type errors can lead to undefined behavior at runtime

In practice, these terms used in a relative sense

Strong typing does not imply static typing

36 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Type Conversion

Explicit: Functions are used to perform conversion.

example: strtol, atoi, itoa in C; float and int etc.

Implicit conversion (coercion)
example:

If a is float and b is int then type of a+b is float
Before doing the addition, b must be converted to a float value. This conversion is done
automatically.

Casting (as in C)

Invisible “conversion:” in untagged unions

37 / 38

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Data Types Summary

Simple/built-in types

Compound types (and their type expressions)
Product, union, recursive, array, pointer

Parametric Vs subtype polymorphism, Code reuse

Polymorphism in OCAML, C++,

Type equivalence
Name, structure and declaration equivalence

Type compatibility

Type inference, type-checking, type-coercion

Strong Vs Weak, Static Vs Dynamic typing

38 / 38

R

R

R

R

R

R

R

	Simple/Built-in Types
	Compound Types
	Polymorphism
	Type Equivalence
	Type Compatibility
	Type Checking

