
Intro Aggregate Charging Potential Table resizing Disjoint sets

CSE 548: Algorithms
Amortized Analysis

R. Sekar

1 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Motivation

Amortized Analysis

Amortization
The spreading out of capital expenses for intangible assets over a specific period of
time (usually over the asset’s useful life) for accounting and tax purposes.

A clever trick used by accountants to average large one-time costs over time.

In algorithms, we use amortization to spread out the cost of expensive operations.

Example: Re-sizing a hash table.

2 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Motivation

Topics

1. Intro

Motivation

2. Aggregate

3. Charging

4. Potential

5. Table resizing

Amortized Rehashing

Vector and String Resizing

6. Disjoint sets

Inverted Trees

Union by Depth

Threaded Trees

Path compression

3 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation or Aggregate Method

Some operations have high worst-case cost, but we can show that the worst case
does not occur every time.

In this case, we can average the costs to obtain a better bound

Summation
Let T (n) be the worst-case running time for executing a sequence of n operations.
Then the amortized time for each operation is T (n)/n.

Note: We are not making an “average case” argument about inputs. We are still talking

about worst-case performance.

4 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation or Aggregate Method

Some operations have high worst-case cost, but we can show that the worst case
does not occur every time.

In this case, we can average the costs to obtain a better bound

Summation
Let T (n) be the worst-case running time for executing a sequence of n operations.
Then the amortized time for each operation is T (n)/n.

Note: We are not making an “average case” argument about inputs. We are still talking

about worst-case performance.

5 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation or Aggregate Method

Some operations have high worst-case cost, but we can show that the worst case
does not occur every time.

In this case, we can average the costs to obtain a better bound

Summation
Let T (n) be the worst-case running time for executing a sequence of n operations.
Then the amortized time for each operation is T (n)/n.

Note: We are not making an “average case” argument about inputs. We are still talking

about worst-case performance.

6 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation Example: Binary Counter

Incr(B[0..])

i = 0

while B[i]=1

B[i] = 0

i ++

B[i] = 1

What is the worst-case runtime of incr?

Simple answer: O(log n), where n = # of incr’s performed

What is the amortized runtime for n incr’s?

Easy to see that an incr will touch B[i] once every 2i operations.

Number of operations is thus

n
log n∑
i=0

1
2i

= 2n

Thus, amortized cost per incr is O(1)

7 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation Example: Binary Counter

Incr(B[0..])

i = 0

while B[i]=1

B[i] = 0

i ++

B[i] = 1

What is the worst-case runtime of incr?

Simple answer: O(log n), where n = # of incr’s performed

What is the amortized runtime for n incr’s?

Easy to see that an incr will touch B[i] once every 2i operations.

Number of operations is thus

n
log n∑
i=0

1
2i

= 2n

Thus, amortized cost per incr is O(1)

8 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation Example: Binary Counter

Incr(B[0..])

i = 0

while B[i]=1

B[i] = 0

i ++

B[i] = 1

What is the worst-case runtime of incr?

Simple answer: O(log n), where n = # of incr’s performed

What is the amortized runtime for n incr’s?

Easy to see that an incr will touch B[i] once every 2i operations.

Number of operations is thus

n
log n∑
i=0

1
2i

= 2n

Thus, amortized cost per incr is O(1)

9 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation Example: Binary Counter

Incr(B[0..])

i = 0

while B[i]=1

B[i] = 0

i ++

B[i] = 1

What is the worst-case runtime of incr?

Simple answer: O(log n), where n = # of incr’s performed

What is the amortized runtime for n incr’s?

Easy to see that an incr will touch B[i] once every 2i operations.

Number of operations is thus

n
log n∑
i=0

1
2i

= 2n

Thus, amortized cost per incr is O(1)

10 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation Example: Binary Counter

Incr(B[0..])

i = 0

while B[i]=1

B[i] = 0

i ++

B[i] = 1

What is the worst-case runtime of incr?

Simple answer: O(log n), where n = # of incr’s performed

What is the amortized runtime for n incr’s?

Easy to see that an incr will touch B[i] once every 2i operations.

Number of operations is thus

n
log n∑
i=0

1
2i

= 2n

Thus, amortized cost per incr is O(1)

11 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Summation Example: Binary Counter

Incr(B[0..])

i = 0

while B[i]=1

B[i] = 0

i ++

B[i] = 1

What is the worst-case runtime of incr?

Simple answer: O(log n), where n = # of incr’s performed

What is the amortized runtime for n incr’s?

Easy to see that an incr will touch B[i] once every 2i operations.

Number of operations is thus

n
log n∑
i=0

1
2i

= 2n

Thus, amortized cost per incr is O(1)

12 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Charging Method

Certain operations charge more than their cost so as to pay for other operations. This
allows total cost to be calculated while ignoring the second category of operations.

In the counter example, we charge 2 units for each operation to change a 0-bit to
1-bit.

Pays for the cost of later flipping the 1-bit to 0-bit.
Important: ensure you have charged enough.
We have satisfied this: a bit can be flipped from 1 to 0 only once after it is flipped from 0 to 1.

Now we ignore costs of 1 to 0 flips in the algorithm

There is only one 0-to-1 bit flipping per call of incr !

So, incr only costs 2 units for each invocation!

13 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Charging Method

Certain operations charge more than their cost so as to pay for other operations. This
allows total cost to be calculated while ignoring the second category of operations.

In the counter example, we charge 2 units for each operation to change a 0-bit to
1-bit.

Pays for the cost of later flipping the 1-bit to 0-bit.
Important: ensure you have charged enough.
We have satisfied this: a bit can be flipped from 1 to 0 only once after it is flipped from 0 to 1.

Now we ignore costs of 1 to 0 flips in the algorithm

There is only one 0-to-1 bit flipping per call of incr !

So, incr only costs 2 units for each invocation!

14 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Charging Method

Certain operations charge more than their cost so as to pay for other operations. This
allows total cost to be calculated while ignoring the second category of operations.

In the counter example, we charge 2 units for each operation to change a 0-bit to
1-bit.

Pays for the cost of later flipping the 1-bit to 0-bit.

Important: ensure you have charged enough.
We have satisfied this: a bit can be flipped from 1 to 0 only once after it is flipped from 0 to 1.

Now we ignore costs of 1 to 0 flips in the algorithm

There is only one 0-to-1 bit flipping per call of incr !

So, incr only costs 2 units for each invocation!

15 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Charging Method

Certain operations charge more than their cost so as to pay for other operations. This
allows total cost to be calculated while ignoring the second category of operations.

In the counter example, we charge 2 units for each operation to change a 0-bit to
1-bit.

Pays for the cost of later flipping the 1-bit to 0-bit.
Important: ensure you have charged enough.
We have satisfied this: a bit can be flipped from 1 to 0 only once after it is flipped from 0 to 1.

Now we ignore costs of 1 to 0 flips in the algorithm

There is only one 0-to-1 bit flipping per call of incr !

So, incr only costs 2 units for each invocation!

16 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Charging Method

Certain operations charge more than their cost so as to pay for other operations. This
allows total cost to be calculated while ignoring the second category of operations.

In the counter example, we charge 2 units for each operation to change a 0-bit to
1-bit.

Pays for the cost of later flipping the 1-bit to 0-bit.
Important: ensure you have charged enough.
We have satisfied this: a bit can be flipped from 1 to 0 only once after it is flipped from 0 to 1.

Now we ignore costs of 1 to 0 flips in the algorithm

There is only one 0-to-1 bit flipping per call of incr !

So, incr only costs 2 units for each invocation!

17 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Stack Example

Consider a stack with two operations:

push(x): Push a value x on the stack
pop(k): Pop off the top k elements

What is the cost of a mix of n push and pop operations?

Key problem: Worst-case cost of a pop is O(n)!

Solution:

Charge 2 units for each push: covers the cost of pushing, and also the cost of a

subsequent pop

A pushed item can be popped only once, so we have charged enough

Now, ignore pop’s altogther, and trivially arrive at O(1) amortized cost for the sequence of

push/pop operations!

18 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Stack Example

Consider a stack with two operations:

push(x): Push a value x on the stack
pop(k): Pop off the top k elements

What is the cost of a mix of n push and pop operations?

Key problem: Worst-case cost of a pop is O(n)!

Solution:

Charge 2 units for each push: covers the cost of pushing, and also the cost of a

subsequent pop

A pushed item can be popped only once, so we have charged enough

Now, ignore pop’s altogther, and trivially arrive at O(1) amortized cost for the sequence of

push/pop operations!

19 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Stack Example

Consider a stack with two operations:

push(x): Push a value x on the stack
pop(k): Pop off the top k elements

What is the cost of a mix of n push and pop operations?

Key problem: Worst-case cost of a pop is O(n)!

Solution:

Charge 2 units for each push: covers the cost of pushing, and also the cost of a

subsequent pop

A pushed item can be popped only once, so we have charged enough

Now, ignore pop’s altogther, and trivially arrive at O(1) amortized cost for the sequence of

push/pop operations!

20 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Stack Example

Consider a stack with two operations:

push(x): Push a value x on the stack
pop(k): Pop off the top k elements

What is the cost of a mix of n push and pop operations?

Key problem: Worst-case cost of a pop is O(n)!

Solution:

Charge 2 units for each push: covers the cost of pushing, and also the cost of a

subsequent pop

A pushed item can be popped only once, so we have charged enough

Now, ignore pop’s altogther, and trivially arrive at O(1) amortized cost for the sequence of

push/pop operations!

21 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Stack Example

Consider a stack with two operations:

push(x): Push a value x on the stack
pop(k): Pop off the top k elements

What is the cost of a mix of n push and pop operations?

Key problem: Worst-case cost of a pop is O(n)!

Solution:

Charge 2 units for each push: covers the cost of pushing, and also the cost of a

subsequent pop

A pushed item can be popped only once, so we have charged enough

Now, ignore pop’s altogther, and trivially arrive at O(1) amortized cost for the sequence of

push/pop operations!
22 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Potential Method

Define a potential for a data structure that is initially zero, and is always non-negative.
The amortized cost of an operation is the cost of the operation minus the change in
potential.

Analogy with “potential” energy. “Potential” is prepaid cost that can be used
subsequently

as the data structure changes and “releases” stored energy

A more sophisticated technique that allows “charges” or “taxes” to be stored within
nodes in a data structure and used subsequently at a later time.

23 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Potential Method

Define a potential for a data structure that is initially zero, and is always non-negative.
The amortized cost of an operation is the cost of the operation minus the change in
potential.

Analogy with “potential” energy. “Potential” is prepaid cost that can be used
subsequently

as the data structure changes and “releases” stored energy

A more sophisticated technique that allows “charges” or “taxes” to be stored within
nodes in a data structure and used subsequently at a later time.

24 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Potential Method

Define a potential for a data structure that is initially zero, and is always non-negative.
The amortized cost of an operation is the cost of the operation minus the change in
potential.

Analogy with “potential” energy. “Potential” is prepaid cost that can be used
subsequently

as the data structure changes and “releases” stored energy

A more sophisticated technique that allows “charges” or “taxes” to be stored within
nodes in a data structure and used subsequently at a later time.

25 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Potential Method: Illustration

Stack:

Each push costs 2 units because a push increases potential energy by 1.
Pops can use the energy released by reduction in stack size!

Counter:

Define potential as the number one 1-bits
Changing a 0 to 1 costs 2 units, one for the operation and one to pay for increase
in potential
Changes of 1 to 0 can now be paid by released potential.

26 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets

Potential Method: Illustration

Stack:

Each push costs 2 units because a push increases potential energy by 1.
Pops can use the energy released by reduction in stack size!

Counter:

Define potential as the number one 1-bits
Changing a 0 to 1 costs 2 units, one for the operation and one to pay for increase
in potential
Changes of 1 to 0 can now be paid by released potential.

27 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Hash Tables

To provide expected constant time access, collisions need to be limited

This requires hash table resizing when they become too full

But this requires all entries to be deleted from current table and inserted into a table that

is larger — a very expensive operation.

Options:

1. Try to guess the table size right; if you guessed wrong, put up with the pain of low

performance.

2. Quit complaining, bite the bullet, and rehash as needed;

3. Amortize: Rehash as needed, and prove that it does not cost much!

28 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Hash Tables

To provide expected constant time access, collisions need to be limited

This requires hash table resizing when they become too full

But this requires all entries to be deleted from current table and inserted into a table that

is larger — a very expensive operation.

Options:

1. Try to guess the table size right; if you guessed wrong, put up with the pain of low

performance.

2. Quit complaining, bite the bullet, and rehash as needed;

3. Amortize: Rehash as needed, and prove that it does not cost much!

29 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Hash Tables

To provide expected constant time access, collisions need to be limited

This requires hash table resizing when they become too full

But this requires all entries to be deleted from current table and inserted into a table that

is larger — a very expensive operation.

Options:

1. Try to guess the table size right; if you guessed wrong, put up with the pain of low

performance.

2. Quit complaining, bite the bullet, and rehash as needed;

3. Amortize: Rehash as needed, and prove that it does not cost much!

30 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Hash Tables

To provide expected constant time access, collisions need to be limited

This requires hash table resizing when they become too full

But this requires all entries to be deleted from current table and inserted into a table that

is larger — a very expensive operation.

Options:

1. Try to guess the table size right; if you guessed wrong, put up with the pain of low

performance.

2. Quit complaining, bite the bullet, and rehash as needed;

3. Amortize: Rehash as needed, and prove that it does not cost much!

31 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Hash Tables

To provide expected constant time access, collisions need to be limited

This requires hash table resizing when they become too full

But this requires all entries to be deleted from current table and inserted into a table that

is larger — a very expensive operation.

Options:

1. Try to guess the table size right; if you guessed wrong, put up with the pain of low

performance.

2. Quit complaining, bite the bullet, and rehash as needed;

3. Amortize: Rehash as needed, and prove that it does not cost much!

32 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehashing

Amortize the cost of rehashing over other hash table operations

Approach 1: Rehash after a large number (say, 1K) operations.
Total cost of 1K ops = 1K for the ops + 1K for rehash = 2K
Note: We may have at most 1K elements in the table after 1K operations, so we may
need to rehash at most 1K times.
So, amortized cost is just 2!
Are we done?

33 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehashing

Amortize the cost of rehashing over other hash table operations

Approach 1: Rehash after a large number (say, 1K) operations.
Total cost of 1K ops = 1K for the ops + 1K for rehash = 2K

Note: We may have at most 1K elements in the table after 1K operations, so we may
need to rehash at most 1K times.
So, amortized cost is just 2!
Are we done?

34 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehashing

Amortize the cost of rehashing over other hash table operations

Approach 1: Rehash after a large number (say, 1K) operations.
Total cost of 1K ops = 1K for the ops + 1K for rehash = 2K
Note: We may have at most 1K elements in the table after 1K operations, so we may
need to rehash at most 1K times.
So, amortized cost is just 2!

Are we done?

35 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehashing

Amortize the cost of rehashing over other hash table operations

Approach 1: Rehash after a large number (say, 1K) operations.
Total cost of 1K ops = 1K for the ops + 1K for rehash = 2K
Note: We may have at most 1K elements in the table after 1K operations, so we may
need to rehash at most 1K times.
So, amortized cost is just 2!
Are we done?

36 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (2)

Are we done?

Consider total cost after 2K, 3K, and 4K operations:

T (2K) = 2K + 1K (first rehash) + 2K (second rehash) = 5K

T (3K) = 3K + 1K (1st rehash) + 2K (2nd rehash) + 3K (3rd ...) = 9K

T (4K) = 4K + 1K + 2K + 3K + 4K = 14K

Hmmm. This is growing like n2, so amortized cost will be O(n)
Need to try a different approach.

37 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (2)

Are we done?

Consider total cost after 2K, 3K, and 4K operations:

T (2K) = 2K + 1K (first rehash) + 2K (second rehash) = 5K

T (3K) = 3K + 1K (1st rehash) + 2K (2nd rehash) + 3K (3rd ...) = 9K

T (4K) = 4K + 1K + 2K + 3K + 4K = 14K

Hmmm. This is growing like n2, so amortized cost will be O(n)
Need to try a different approach.

38 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (2)

Are we done?

Consider total cost after 2K, 3K, and 4K operations:

T (2K) = 2K + 1K (first rehash) + 2K (second rehash) = 5K

T (3K) = 3K + 1K (1st rehash) + 2K (2nd rehash) + 3K (3rd ...) = 9K

T (4K) = 4K + 1K + 2K + 3K + 4K = 14K

Hmmm. This is growing like n2, so amortized cost will be O(n)
Need to try a different approach.

39 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (2)

Are we done?

Consider total cost after 2K, 3K, and 4K operations:

T (2K) = 2K + 1K (first rehash) + 2K (second rehash) = 5K

T (3K) = 3K + 1K (1st rehash) + 2K (2nd rehash) + 3K (3rd ...) = 9K

T (4K) = 4K + 1K + 2K + 3K + 4K = 14K

Hmmm. This is growing like n2, so amortized cost will be O(n)
Need to try a different approach.

40 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (3)

Approach 2: Double the hash table whenever it gets full
Say, you start with an empty table of size N . For simplicity, assume only insert
operations.

You invoke N insert operations, then rehash to a 2N table.

T (N) = N + N (rehashing N entries) = 2N

Now, you can insert N more before needing rehash.

T (2N) = T (N) + N + 2N (rehashing 2N entries) = 5N

Now, you can insert 2N more before needing rehash:

T (4N) = T (2N) + 2N + 4N (rehashing 4N entries) = 11N

The general recurrence is T (n) = T (n/2) + 1.5n, which is linear.
So, amortized cost is constant!

41 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (3)

Approach 2: Double the hash table whenever it gets full
Say, you start with an empty table of size N . For simplicity, assume only insert
operations.
You invoke N insert operations, then rehash to a 2N table.

T (N) = N + N (rehashing N entries) = 2N

Now, you can insert N more before needing rehash.

T (2N) = T (N) + N + 2N (rehashing 2N entries) = 5N

Now, you can insert 2N more before needing rehash:

T (4N) = T (2N) + 2N + 4N (rehashing 4N entries) = 11N

The general recurrence is T (n) = T (n/2) + 1.5n, which is linear.
So, amortized cost is constant!

42 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (3)

Approach 2: Double the hash table whenever it gets full
Say, you start with an empty table of size N . For simplicity, assume only insert
operations.
You invoke N insert operations, then rehash to a 2N table.

T (N) = N + N (rehashing N entries) = 2N

Now, you can insert N more before needing rehash.

T (2N) = T (N) + N + 2N (rehashing 2N entries) = 5N

Now, you can insert 2N more before needing rehash:

T (4N) = T (2N) + 2N + 4N (rehashing 4N entries) = 11N

The general recurrence is T (n) = T (n/2) + 1.5n, which is linear.
So, amortized cost is constant!

43 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (3)

Approach 2: Double the hash table whenever it gets full
Say, you start with an empty table of size N . For simplicity, assume only insert
operations.
You invoke N insert operations, then rehash to a 2N table.

T (N) = N + N (rehashing N entries) = 2N

Now, you can insert N more before needing rehash.

T (2N) = T (N) + N + 2N (rehashing 2N entries) = 5N

Now, you can insert 2N more before needing rehash:

T (4N) = T (2N) + 2N + 4N (rehashing 4N entries) = 11N

The general recurrence is T (n) = T (n/2) + 1.5n, which is linear.
So, amortized cost is constant!

44 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (3)

Approach 2: Double the hash table whenever it gets full
Say, you start with an empty table of size N . For simplicity, assume only insert
operations.
You invoke N insert operations, then rehash to a 2N table.

T (N) = N + N (rehashing N entries) = 2N

Now, you can insert N more before needing rehash.

T (2N) = T (N) + N + 2N (rehashing 2N entries) = 5N

Now, you can insert 2N more before needing rehash:

T (4N) = T (2N) + 2N + 4N (rehashing 4N entries) = 11N

The general recurrence is T (n) = T (n/2) + 1.5n, which is linear.
So, amortized cost is constant!

45 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (4)
Alternatively, we can think in terms of charging.
Each insert operation can be charged 3 units of cost:

One for the insert operation

One for rehashing of this element at the end of this run of inserts

One for rehashing an element that was already in the hash table when this run
began

A run contains as many elements as the hash table at the beginning of run — so we
have accounted for all costs.
Thus, rehashing

increases the costs of insertions by a factor of 3.

lookup costs are unchanged.

46 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (4)
Alternatively, we can think in terms of charging.
Each insert operation can be charged 3 units of cost:

One for the insert operation

One for rehashing of this element at the end of this run of inserts

One for rehashing an element that was already in the hash table when this run
began

A run contains as many elements as the hash table at the beginning of run — so we
have accounted for all costs.

Thus, rehashing

increases the costs of insertions by a factor of 3.

lookup costs are unchanged.

47 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (4)
Alternatively, we can think in terms of charging.
Each insert operation can be charged 3 units of cost:

One for the insert operation

One for rehashing of this element at the end of this run of inserts

One for rehashing an element that was already in the hash table when this run
began

A run contains as many elements as the hash table at the beginning of run — so we
have accounted for all costs.
Thus, rehashing

increases the costs of insertions by a factor of 3.

lookup costs are unchanged.
48 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (5)
Alternatively, we can think in terms of potential.

Hash table as a spring: as more elements are inserted, the spring has to be
compressed to make room.

Let |H| denote the capacity and α the occupancy of H

Define potential as 0 when α ≤ 0.5 and 2(α− 0.5)|H| otherwise.
Immediately after resize, let the hash table capacity be k. Note α ≤ 0.5 so potential
is 0.

Each insert (after α reaches 0.5) costs 3 units: one for the operation, and 2 for the
increase in potential.

When α reaches 1, the potential is 2k. After resizing to 2k, potential falls to 0, and
the released 2k cost pays for rehashing 2k elements.

49 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (5)
Alternatively, we can think in terms of potential.

Hash table as a spring: as more elements are inserted, the spring has to be
compressed to make room.

Let |H| denote the capacity and α the occupancy of H

Define potential as 0 when α ≤ 0.5 and 2(α− 0.5)|H| otherwise.

Immediately after resize, let the hash table capacity be k. Note α ≤ 0.5 so potential
is 0.

Each insert (after α reaches 0.5) costs 3 units: one for the operation, and 2 for the
increase in potential.

When α reaches 1, the potential is 2k. After resizing to 2k, potential falls to 0, and
the released 2k cost pays for rehashing 2k elements.

50 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (5)
Alternatively, we can think in terms of potential.

Hash table as a spring: as more elements are inserted, the spring has to be
compressed to make room.

Let |H| denote the capacity and α the occupancy of H

Define potential as 0 when α ≤ 0.5 and 2(α− 0.5)|H| otherwise.
Immediately after resize, let the hash table capacity be k. Note α ≤ 0.5 so potential
is 0.

Each insert (after α reaches 0.5) costs 3 units: one for the operation, and 2 for the
increase in potential.

When α reaches 1, the potential is 2k. After resizing to 2k, potential falls to 0, and
the released 2k cost pays for rehashing 2k elements.

51 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (5)
Alternatively, we can think in terms of potential.

Hash table as a spring: as more elements are inserted, the spring has to be
compressed to make room.

Let |H| denote the capacity and α the occupancy of H

Define potential as 0 when α ≤ 0.5 and 2(α− 0.5)|H| otherwise.
Immediately after resize, let the hash table capacity be k. Note α ≤ 0.5 so potential
is 0.

Each insert (after α reaches 0.5) costs 3 units: one for the operation, and 2 for the
increase in potential.

When α reaches 1, the potential is 2k. After resizing to 2k, potential falls to 0, and
the released 2k cost pays for rehashing 2k elements.

52 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (5)
Alternatively, we can think in terms of potential.

Hash table as a spring: as more elements are inserted, the spring has to be
compressed to make room.

Let |H| denote the capacity and α the occupancy of H

Define potential as 0 when α ≤ 0.5 and 2(α− 0.5)|H| otherwise.
Immediately after resize, let the hash table capacity be k. Note α ≤ 0.5 so potential
is 0.

Each insert (after α reaches 0.5) costs 3 units: one for the operation, and 2 for the
increase in potential.

When α reaches 1, the potential is 2k. After resizing to 2k, potential falls to 0, and
the released 2k cost pays for rehashing 2k elements.

53 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized Rehash (6)

What if we increase the size by a factor less than 2?

Is there a threshold t > 1 such that expansion by a factor less than t won’t yield

amortized constant time?

What happens if we want to support both deletes and inserts, and want to make
sure that the table never uses more than k times the actual number of elements?

Is there a minimum value of k for which this can be achieved?

Do you need a different threshold for expansion and contraction? Are there any

constraints on the relationship between these two thresholds to ensure amortized

constant time?

54 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Amortized Rehashing Vector and String Resizing

Amortized performance of Vectors vs Lists

Linked lists: Data structures of choice if you don’t know the # of elements in advance.

Space inefficient: 2x or more memory for very small objects.
Poor cache performance: Pointer chasing is cache unfriendly.
Sequential access: No fast access to kth element.

Vectors: Dynamically-sized arrays have none of these problems. But resizing is
expensive.

Is it possible to achieve good amortized performance?
When should the vector be expanded/contracted?
What operations can we support in constant amortized time? Inserts? insert at
end? concatenation?

Strings: We can raise similar questions as Vectors.
55 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint Sets

Represent disjoint sets as “inverted trees”

Each element has a parent pointer π

To compute the union of set A with B, simply make B’s root the parent of A’s root.

Figure 5.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) �= find(v):
add edge {u, v} to X
union(u, v)

5.1.4 A data structure for disjoint sets
Union by rank
One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to
the root of the tree. This root element is a convenient representative, or name, for the set. It
is distinguished from the other elements by the fact that its parent pointer is a self-loop.
In addition to a parent pointer π, each node also has a rank that, for the time being, should

be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x �= π(x) : x = π(x)

Figure 5.5 A directed-tree representation of two sets {B,E} and {A,C,D,F,G,H}.

E H

B C F

A

D

G

138

56 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint Sets (2)

Figure 5.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) �= find(v):
add edge {u, v} to X
union(u, v)

5.1.4 A data structure for disjoint sets
Union by rank
One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to
the root of the tree. This root element is a convenient representative, or name, for the set. It
is distinguished from the other elements by the fact that its parent pointer is a self-loop.
In addition to a parent pointer π, each node also has a rank that, for the time being, should

be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x �= π(x) : x = π(x)

Figure 5.5 A directed-tree representation of two sets {B,E} and {A,C,D,F,G,H}.

E H

B C F

A

D

G

138

return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.
Merging two sets is easy: make the root of one point to the root of the other. But we have

a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx

else:
π(rx) = ry

if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

This extends to internal (nonroot) nodes as well: a node of rank k has at least 2k de-
scendants. After all, any internal node was once a root, and neither its rank nor its set of
descendants has changed since then. Moreover, different rank-k nodes cannot have common
descendants, since by Property 1 any element has at most one ancestor of rank k. Which
means

Property 3 If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the
trees have height ≤ log n, and this is an upper bound on the running time of find and union.

139

procedure union(x, y)

rx = find(x)

ry = find(y)

π(ry) = rx

Complexity
makeset takes O(1) time

find takes time equal to depth of set:
O(n) in the worst case.

union takes O(1) time on a root element;
in the worst case, its complexity matches
find.

Amortized complexity
Can you construct a worst-case example,
where N operations take O(N2) time?

Can we improve this?

57 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint Sets (2)

Figure 5.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) �= find(v):
add edge {u, v} to X
union(u, v)

5.1.4 A data structure for disjoint sets
Union by rank
One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to
the root of the tree. This root element is a convenient representative, or name, for the set. It
is distinguished from the other elements by the fact that its parent pointer is a self-loop.
In addition to a parent pointer π, each node also has a rank that, for the time being, should

be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x �= π(x) : x = π(x)

Figure 5.5 A directed-tree representation of two sets {B,E} and {A,C,D,F,G,H}.

E H

B C F

A

D

G

138

return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.
Merging two sets is easy: make the root of one point to the root of the other. But we have

a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx

else:
π(rx) = ry

if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

This extends to internal (nonroot) nodes as well: a node of rank k has at least 2k de-
scendants. After all, any internal node was once a root, and neither its rank nor its set of
descendants has changed since then. Moreover, different rank-k nodes cannot have common
descendants, since by Property 1 any element has at most one ancestor of rank k. Which
means

Property 3 If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the
trees have height ≤ log n, and this is an upper bound on the running time of find and union.

139

procedure union(x, y)

rx = find(x)

ry = find(y)

π(ry) = rx

Complexity
makeset takes O(1) time

find takes time equal to depth of set:
O(n) in the worst case.

union takes O(1) time on a root element;
in the worst case, its complexity matches
find.

Amortized complexity
Can you construct a worst-case example,
where N operations take O(N2) time?

Can we improve this?

58 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint Sets (2)

Figure 5.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) �= find(v):
add edge {u, v} to X
union(u, v)

5.1.4 A data structure for disjoint sets
Union by rank
One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to
the root of the tree. This root element is a convenient representative, or name, for the set. It
is distinguished from the other elements by the fact that its parent pointer is a self-loop.
In addition to a parent pointer π, each node also has a rank that, for the time being, should

be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x �= π(x) : x = π(x)

Figure 5.5 A directed-tree representation of two sets {B,E} and {A,C,D,F,G,H}.

E H

B C F

A

D

G

138

return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.
Merging two sets is easy: make the root of one point to the root of the other. But we have

a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx

else:
π(rx) = ry

if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

This extends to internal (nonroot) nodes as well: a node of rank k has at least 2k de-
scendants. After all, any internal node was once a root, and neither its rank nor its set of
descendants has changed since then. Moreover, different rank-k nodes cannot have common
descendants, since by Property 1 any element has at most one ancestor of rank k. Which
means

Property 3 If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the
trees have height ≤ log n, and this is an upper bound on the running time of find and union.

139

procedure union(x, y)

rx = find(x)

ry = find(y)

π(ry) = rx

Complexity
makeset takes O(1) time

find takes time equal to depth of set:
O(n) in the worst case.

union takes O(1) time on a root element;
in the worst case, its complexity matches
find.

Amortized complexity
Can you construct a worst-case example,
where N operations take O(N2) time?

Can we improve this?

59 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint Sets (2)

Figure 5.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) �= find(v):
add edge {u, v} to X
union(u, v)

5.1.4 A data structure for disjoint sets
Union by rank
One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to
the root of the tree. This root element is a convenient representative, or name, for the set. It
is distinguished from the other elements by the fact that its parent pointer is a self-loop.
In addition to a parent pointer π, each node also has a rank that, for the time being, should

be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x �= π(x) : x = π(x)

Figure 5.5 A directed-tree representation of two sets {B,E} and {A,C,D,F,G,H}.

E H

B C F

A

D

G

138

return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.
Merging two sets is easy: make the root of one point to the root of the other. But we have

a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx

else:
π(rx) = ry

if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

This extends to internal (nonroot) nodes as well: a node of rank k has at least 2k de-
scendants. After all, any internal node was once a root, and neither its rank nor its set of
descendants has changed since then. Moreover, different rank-k nodes cannot have common
descendants, since by Property 1 any element has at most one ancestor of rank k. Which
means

Property 3 If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the
trees have height ≤ log n, and this is an upper bound on the running time of find and union.

139

procedure union(x, y)

rx = find(x)

ry = find(y)

π(ry) = rx

Complexity
makeset takes O(1) time

find takes time equal to depth of set:
O(n) in the worst case.

union takes O(1) time on a root element;
in the worst case, its complexity matches
find.

Amortized complexity
Can you construct a worst-case example,
where N operations take O(N2) time?

Can we improve this?

60 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint Sets (2)

Figure 5.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) �= find(v):
add edge {u, v} to X
union(u, v)

5.1.4 A data structure for disjoint sets
Union by rank
One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to
the root of the tree. This root element is a convenient representative, or name, for the set. It
is distinguished from the other elements by the fact that its parent pointer is a self-loop.
In addition to a parent pointer π, each node also has a rank that, for the time being, should

be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x �= π(x) : x = π(x)

Figure 5.5 A directed-tree representation of two sets {B,E} and {A,C,D,F,G,H}.

E H

B C F

A

D

G

138

return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.
Merging two sets is easy: make the root of one point to the root of the other. But we have

a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx

else:
π(rx) = ry

if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

This extends to internal (nonroot) nodes as well: a node of rank k has at least 2k de-
scendants. After all, any internal node was once a root, and neither its rank nor its set of
descendants has changed since then. Moreover, different rank-k nodes cannot have common
descendants, since by Property 1 any element has at most one ancestor of rank k. Which
means

Property 3 If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the
trees have height ≤ log n, and this is an upper bound on the running time of find and union.

139

procedure union(x, y)

rx = find(x)

ry = find(y)

π(ry) = rx

Complexity
makeset takes O(1) time

find takes time equal to depth of set:
O(n) in the worst case.

union takes O(1) time on a root element;
in the worst case, its complexity matches
find.

Amortized complexity
Can you construct a worst-case example,
where N operations take O(N2) time?

Can we improve this?

61 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint Sets (2)

Figure 5.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) �= find(v):
add edge {u, v} to X
union(u, v)

5.1.4 A data structure for disjoint sets
Union by rank
One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to
the root of the tree. This root element is a convenient representative, or name, for the set. It
is distinguished from the other elements by the fact that its parent pointer is a self-loop.
In addition to a parent pointer π, each node also has a rank that, for the time being, should

be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x �= π(x) : x = π(x)

Figure 5.5 A directed-tree representation of two sets {B,E} and {A,C,D,F,G,H}.

E H

B C F

A

D

G

138

return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.
Merging two sets is easy: make the root of one point to the root of the other. But we have

a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx

else:
π(rx) = ry

if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

This extends to internal (nonroot) nodes as well: a node of rank k has at least 2k de-
scendants. After all, any internal node was once a root, and neither its rank nor its set of
descendants has changed since then. Moreover, different rank-k nodes cannot have common
descendants, since by Property 1 any element has at most one ancestor of rank k. Which
means

Property 3 If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the
trees have height ≤ log n, and this is an upper bound on the running time of find and union.

139

procedure union(x, y)

rx = find(x)

ry = find(y)

π(ry) = rx

Complexity
makeset takes O(1) time

find takes time equal to depth of set:
O(n) in the worst case.

union takes O(1) time on a root element;
in the worst case, its complexity matches
find.

Amortized complexity
Can you construct a worst-case example,
where N operations take O(N2) time?

Can we improve this?

62 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint Sets (2)

Figure 5.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) �= find(v):
add edge {u, v} to X
union(u, v)

5.1.4 A data structure for disjoint sets
Union by rank
One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to
the root of the tree. This root element is a convenient representative, or name, for the set. It
is distinguished from the other elements by the fact that its parent pointer is a self-loop.
In addition to a parent pointer π, each node also has a rank that, for the time being, should

be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x �= π(x) : x = π(x)

Figure 5.5 A directed-tree representation of two sets {B,E} and {A,C,D,F,G,H}.

E H

B C F

A

D

G

138

return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.
Merging two sets is easy: make the root of one point to the root of the other. But we have

a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx

else:
π(rx) = ry

if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

This extends to internal (nonroot) nodes as well: a node of rank k has at least 2k de-
scendants. After all, any internal node was once a root, and neither its rank nor its set of
descendants has changed since then. Moreover, different rank-k nodes cannot have common
descendants, since by Property 1 any element has at most one ancestor of rank k. Which
means

Property 3 If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the
trees have height ≤ log n, and this is an upper bound on the running time of find and union.

139

procedure union(x, y)

rx = find(x)

ry = find(y)

π(ry) = rx

Complexity
makeset takes O(1) time

find takes time equal to depth of set:
O(n) in the worst case.

union takes O(1) time on a root element;
in the worst case, its complexity matches
find.

Amortized complexity
Can you construct a worst-case example,
where N operations take O(N2) time?

Can we improve this?
63 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint Sets with Union by Depth

Figure 5.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) �= find(v):
add edge {u, v} to X
union(u, v)

5.1.4 A data structure for disjoint sets
Union by rank
One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to
the root of the tree. This root element is a convenient representative, or name, for the set. It
is distinguished from the other elements by the fact that its parent pointer is a self-loop.
In addition to a parent pointer π, each node also has a rank that, for the time being, should

be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x �= π(x) : x = π(x)

Figure 5.5 A directed-tree representation of two sets {B,E} and {A,C,D,F,G,H}.

E H

B C F

A

D

G

138

return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.
Merging two sets is easy: make the root of one point to the root of the other. But we have

a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx

else:
π(rx) = ry

if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

This extends to internal (nonroot) nodes as well: a node of rank k has at least 2k de-
scendants. After all, any internal node was once a root, and neither its rank nor its set of
descendants has changed since then. Moreover, different rank-k nodes cannot have common
descendants, since by Property 1 any element has at most one ancestor of rank k. Which
means

Property 3 If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the
trees have height ≤ log n, and this is an upper bound on the running time of find and union.

139

return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.
Merging two sets is easy: make the root of one point to the root of the other. But we have

a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx

else:
π(rx) = ry

if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

This extends to internal (nonroot) nodes as well: a node of rank k has at least 2k de-
scendants. After all, any internal node was once a root, and neither its rank nor its set of
descendants has changed since then. Moreover, different rank-k nodes cannot have common
descendants, since by Property 1 any element has at most one ancestor of rank k. Which
means

Property 3 If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the
trees have height ≤ log n, and this is an upper bound on the running time of find and union.

139

return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.
Merging two sets is easy: make the root of one point to the root of the other. But we have

a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx

else:
π(rx) = ry

if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

This extends to internal (nonroot) nodes as well: a node of rank k has at least 2k de-
scendants. After all, any internal node was once a root, and neither its rank nor its set of
descendants has changed since then. Moreover, different rank-k nodes cannot have common
descendants, since by Property 1 any element has at most one ancestor of rank k. Which
means

Property 3 If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the
trees have height ≤ log n, and this is an upper bound on the running time of find and union.

139

rank of a node is the height of subtree rooted at that node.

64 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint Sets with Union by Depth (2)
Figure 5.6 A sequence of disjoint-set operations. Superscripts denote rank.

After makeset(A),makeset(B), . . . ,makeset(G):

A0 B0 C0 D0 E0 F0 0G

After union(A,D),union(B,E),union(C,F):

A0 B0 C0

G0F1E1D1

After union(C,G),union(E,A):

B

1

F1

C 0G

0

E

D2

A0 0

After union(B,G):

A

G0

FE1

0

C0

D2

B0

1

Path compression

With the data structure as presented so far, the total time for Kruskal’s algorithm becomes
O(|E| log |V |) for sorting the edges (remember, log |E| ≈ log |V |) plus another O(|E| log |V |) for
the union and find operations that dominate the rest of the algorithm. So there seems to be
little incentive to make our data structure any more efficient.
But what if the edges are given to us sorted? Or if the weights are small (say, O(|E|)) so

that sorting can be done in linear time? Then the data structure part becomes the bottleneck,
and it is useful to think about improving its performance beyond log n per operation. As it
turns out, the improved data structure is useful in many other applications.
But how can we perform union’s and find’s faster than log n? The answer is, by being a

140

65 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint Sets with Union by Depth (3)

Figure 5.6 A sequence of disjoint-set operations. Superscripts denote rank.

After makeset(A),makeset(B), . . . ,makeset(G):

A0 B0 C0 D0 E0 F0 0G

After union(A,D),union(B,E),union(C,F):

A0 B0 C0

G0F1E1D1

After union(C,G),union(E,A):

B

1

F1

C 0G

0

E

D2

A0 0

After union(B,G):

A

G0

FE1

0

C0

D2

B0

1

Path compression

With the data structure as presented so far, the total time for Kruskal’s algorithm becomes
O(|E| log |V |) for sorting the edges (remember, log |E| ≈ log |V |) plus another O(|E| log |V |) for
the union and find operations that dominate the rest of the algorithm. So there seems to be
little incentive to make our data structure any more efficient.
But what if the edges are given to us sorted? Or if the weights are small (say, O(|E|)) so

that sorting can be done in linear time? Then the data structure part becomes the bottleneck,
and it is useful to think about improving its performance beyond log n per operation. As it
turns out, the improved data structure is useful in many other applications.
But how can we perform union’s and find’s faster than log n? The answer is, by being a

140

66 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth

Asymptotic complexity of makeset unchanged.

union has become a bit more expensive, but only modestly.

What about find?

A sequence of N operations can create at most N elements

So, maximum set size is O(N)

With union by rank, each increase in rank can occur only after a doubling of elements in

the set

Observation

The number of nodes of rank k never exceeds N/2k

So, height of trees is bounded by logN

67 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth

Asymptotic complexity of makeset unchanged.

union has become a bit more expensive, but only modestly.

What about find?

A sequence of N operations can create at most N elements

So, maximum set size is O(N)

With union by rank, each increase in rank can occur only after a doubling of elements in

the set

Observation

The number of nodes of rank k never exceeds N/2k

So, height of trees is bounded by logN

68 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth

Asymptotic complexity of makeset unchanged.

union has become a bit more expensive, but only modestly.

What about find?

A sequence of N operations can create at most N elements

So, maximum set size is O(N)

With union by rank, each increase in rank can occur only after a doubling of elements in

the set

Observation

The number of nodes of rank k never exceeds N/2k

So, height of trees is bounded by logN

69 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth

Asymptotic complexity of makeset unchanged.

union has become a bit more expensive, but only modestly.

What about find?

A sequence of N operations can create at most N elements

So, maximum set size is O(N)

With union by rank, each increase in rank can occur only after a doubling of elements in

the set

Observation

The number of nodes of rank k never exceeds N/2k

So, height of trees is bounded by logN

70 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth

Asymptotic complexity of makeset unchanged.

union has become a bit more expensive, but only modestly.

What about find?

A sequence of N operations can create at most N elements

So, maximum set size is O(N)

With union by rank, each increase in rank can occur only after a doubling of elements in

the set

Observation

The number of nodes of rank k never exceeds N/2k

So, height of trees is bounded by logN

71 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth (2)

Height of trees is bounded by logN

Thus we have a complexity of O(logN) for find

Question: Is this bound tight?

From here on, we limit union operations to only root nodes, so their cost is O(1).

This requires find to be moved out of union into a separate operation, and
hence the total number of operations increases, but only by a constant factor.

72 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth (2)

Height of trees is bounded by logN

Thus we have a complexity of O(logN) for find

Question: Is this bound tight?

From here on, we limit union operations to only root nodes, so their cost is O(1).

This requires find to be moved out of union into a separate operation, and
hence the total number of operations increases, but only by a constant factor.

73 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth (2)

Height of trees is bounded by logN

Thus we have a complexity of O(logN) for find

Question: Is this bound tight?

From here on, we limit union operations to only root nodes, so their cost is O(1).

This requires find to be moved out of union into a separate operation, and
hence the total number of operations increases, but only by a constant factor.

74 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Complexity of disjoint sets w/ union by depth (2)

Height of trees is bounded by logN

Thus we have a complexity of O(logN) for find

Question: Is this bound tight?

From here on, we limit union operations to only root nodes, so their cost is O(1).

This requires find to be moved out of union into a separate operation, and
hence the total number of operations increases, but only by a constant factor.

75 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Improving find performance

Idea: Why not force depth to be 1? Then find will have O(1) complexity!

Approach: Threaded Trees

Algorithms Lecture 17: Disjoint Sets [Fa’13]

in a set; we will ‘thread’ a linked list through each set, starting at the set’s leader. The two threads are
merged in the UNION algorithm in constant time.

a

b c d

p

q r

a

p q r b c d

Merging two sets stored as threaded trees.
Bold arrows point to leaders; lighter arrows form the threads. Shaded nodes have a new leader.

MAKESET(x):
leader(x)← x
next(x)← x

FIND(x):
return leader(x)

UNION(x , y):
x ← FIND(x)
y ← FIND(y)

y ← y
leader(y)← x
while (next(y) �= NULL)

y ← next(y)
leader(y)← x

next(y)← next(x)
next(x)← y

The worst-case running time of UNION is a constant times the size of the larger set. Thus, if we merge
a one-element set with another n-element set, the running time can be Θ(n). Generalizing this idea, it is
quite easy to come up with a sequence of n MAKESET and n− 1 UNION operations that requires Θ(n2)
time to create the set {1, 2, . . . , n} from scratch.

WORSTCASESEQUENCE(n):
MAKESET(1)
for i← 2 to n

MAKESET(i)
UNION(1, i)

We are being stupid in two different ways here. One is the order of operations in WORSTCASE-
SEQUENCE. Obviously, it would be more efficient to merge the sets in the other order, or to use some sort
of divide and conquer approach. Unfortunately, we can’t fix this; we don’t get to decide how our data
structures are used! The other is that we always update the leader pointers in the larger set. To fix this,
we add a comparison inside the UNION algorithm to determine which set is smaller. This requires us to
maintain the size of each set, but that’s easy.

MAKEWEIGHTEDSET(x):
leader(x)← x
next(x)← x
size(x)← 1

WEIGHTEDUNION(x , y)
x ← FIND(x)
y ← FIND(y)
if size(x)> size(y)

UNION(x , y)
size(x)← size(x) + size(y)

else
UNION(y , x)
size(y)← size(x) + size(y)

The new WEIGHTEDUNION algorithm still takes Θ(n) time to merge two n-element sets. However, in
an amortized sense, this algorithm is much more efficient. Intuitively, before we can merge two large
sets, we have to perform a large number of MAKEWEIGHTEDSET operations.

3

Problem: Worst-case complexity of union becomes O(n)

Solution:

Merge smaller set with larger set
Amortize cost of union over other operations

76 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Improving find performance

Idea: Why not force depth to be 1? Then find will have O(1) complexity!

Approach: Threaded Trees

Algorithms Lecture 17: Disjoint Sets [Fa’13]

in a set; we will ‘thread’ a linked list through each set, starting at the set’s leader. The two threads are
merged in the UNION algorithm in constant time.

a

b c d

p

q r

a

p q r b c d

Merging two sets stored as threaded trees.
Bold arrows point to leaders; lighter arrows form the threads. Shaded nodes have a new leader.

MAKESET(x):
leader(x)← x
next(x)← x

FIND(x):
return leader(x)

UNION(x , y):
x ← FIND(x)
y ← FIND(y)

y ← y
leader(y)← x
while (next(y) �= NULL)

y ← next(y)
leader(y)← x

next(y)← next(x)
next(x)← y

The worst-case running time of UNION is a constant times the size of the larger set. Thus, if we merge
a one-element set with another n-element set, the running time can be Θ(n). Generalizing this idea, it is
quite easy to come up with a sequence of n MAKESET and n− 1 UNION operations that requires Θ(n2)
time to create the set {1, 2, . . . , n} from scratch.

WORSTCASESEQUENCE(n):
MAKESET(1)
for i← 2 to n

MAKESET(i)
UNION(1, i)

We are being stupid in two different ways here. One is the order of operations in WORSTCASE-
SEQUENCE. Obviously, it would be more efficient to merge the sets in the other order, or to use some sort
of divide and conquer approach. Unfortunately, we can’t fix this; we don’t get to decide how our data
structures are used! The other is that we always update the leader pointers in the larger set. To fix this,
we add a comparison inside the UNION algorithm to determine which set is smaller. This requires us to
maintain the size of each set, but that’s easy.

MAKEWEIGHTEDSET(x):
leader(x)← x
next(x)← x
size(x)← 1

WEIGHTEDUNION(x , y)
x ← FIND(x)
y ← FIND(y)
if size(x)> size(y)

UNION(x , y)
size(x)← size(x) + size(y)

else
UNION(y , x)
size(y)← size(x) + size(y)

The new WEIGHTEDUNION algorithm still takes Θ(n) time to merge two n-element sets. However, in
an amortized sense, this algorithm is much more efficient. Intuitively, before we can merge two large
sets, we have to perform a large number of MAKEWEIGHTEDSET operations.

3

Problem: Worst-case complexity of union becomes O(n)

Solution:

Merge smaller set with larger set
Amortize cost of union over other operations

77 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Improving find performance

Idea: Why not force depth to be 1? Then find will have O(1) complexity!

Approach: Threaded Trees

Algorithms Lecture 17: Disjoint Sets [Fa’13]

in a set; we will ‘thread’ a linked list through each set, starting at the set’s leader. The two threads are
merged in the UNION algorithm in constant time.

a

b c d

p

q r

a

p q r b c d

Merging two sets stored as threaded trees.
Bold arrows point to leaders; lighter arrows form the threads. Shaded nodes have a new leader.

MAKESET(x):
leader(x)← x
next(x)← x

FIND(x):
return leader(x)

UNION(x , y):
x ← FIND(x)
y ← FIND(y)

y ← y
leader(y)← x
while (next(y) �= NULL)

y ← next(y)
leader(y)← x

next(y)← next(x)
next(x)← y

The worst-case running time of UNION is a constant times the size of the larger set. Thus, if we merge
a one-element set with another n-element set, the running time can be Θ(n). Generalizing this idea, it is
quite easy to come up with a sequence of n MAKESET and n− 1 UNION operations that requires Θ(n2)
time to create the set {1, 2, . . . , n} from scratch.

WORSTCASESEQUENCE(n):
MAKESET(1)
for i← 2 to n

MAKESET(i)
UNION(1, i)

We are being stupid in two different ways here. One is the order of operations in WORSTCASE-
SEQUENCE. Obviously, it would be more efficient to merge the sets in the other order, or to use some sort
of divide and conquer approach. Unfortunately, we can’t fix this; we don’t get to decide how our data
structures are used! The other is that we always update the leader pointers in the larger set. To fix this,
we add a comparison inside the UNION algorithm to determine which set is smaller. This requires us to
maintain the size of each set, but that’s easy.

MAKEWEIGHTEDSET(x):
leader(x)← x
next(x)← x
size(x)← 1

WEIGHTEDUNION(x , y)
x ← FIND(x)
y ← FIND(y)
if size(x)> size(y)

UNION(x , y)
size(x)← size(x) + size(y)

else
UNION(y , x)
size(y)← size(x) + size(y)

The new WEIGHTEDUNION algorithm still takes Θ(n) time to merge two n-element sets. However, in
an amortized sense, this algorithm is much more efficient. Intuitively, before we can merge two large
sets, we have to perform a large number of MAKEWEIGHTEDSET operations.

3

Problem: Worst-case complexity of union becomes O(n)

Solution:

Merge smaller set with larger set
Amortize cost of union over other operations

78 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Sets w/ threaded trees: Amortized analysis

Other than cost of updating parent pointers, union costs O(1)

Idea: Charge the cost of updating a parent pointer to an element.

Key observation: Each time an element’s parent pointer changes, it is in a set that
is twice as large as before

So, with n operations, you can at most O(log n) parent pointer updates per element

Thus, amortized cost of n operations, consisting of some mix of makeset, find
and union is at most n log n

79 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Sets w/ threaded trees: Amortized analysis

Other than cost of updating parent pointers, union costs O(1)

Idea: Charge the cost of updating a parent pointer to an element.

Key observation: Each time an element’s parent pointer changes, it is in a set that
is twice as large as before

So, with n operations, you can at most O(log n) parent pointer updates per element

Thus, amortized cost of n operations, consisting of some mix of makeset, find
and union is at most n log n

80 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Sets w/ threaded trees: Amortized analysis

Other than cost of updating parent pointers, union costs O(1)

Idea: Charge the cost of updating a parent pointer to an element.

Key observation: Each time an element’s parent pointer changes, it is in a set that
is twice as large as before

So, with n operations, you can at most O(log n) parent pointer updates per element

Thus, amortized cost of n operations, consisting of some mix of makeset, find
and union is at most n log n

81 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Sets w/ threaded trees: Amortized analysis

Other than cost of updating parent pointers, union costs O(1)

Idea: Charge the cost of updating a parent pointer to an element.

Key observation: Each time an element’s parent pointer changes, it is in a set that
is twice as large as before

So, with n operations, you can at most O(log n) parent pointer updates per element

Thus, amortized cost of n operations, consisting of some mix of makeset, find
and union is at most n log n

82 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Sets w/ threaded trees: Amortized analysis

Other than cost of updating parent pointers, union costs O(1)

Idea: Charge the cost of updating a parent pointer to an element.

Key observation: Each time an element’s parent pointer changes, it is in a set that
is twice as large as before

So, with n operations, you can at most O(log n) parent pointer updates per element

Thus, amortized cost of n operations, consisting of some mix of makeset, find
and union is at most n log n

83 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Further improvement

Can we combine the best elements of the two approaches?

Threaded trees use eager union while the original approach used a lazy approach
Eager approach is better for find, while being lazy is better for union.
So, why not use lazy approach for union and eager approach for find?

Path compression: Retains lazy union, but when a find(x) is called, eagerly
promotes x to the level below the root

Actually, we promote x, π(x), π(π(x)), π(π(π(x))) and so on.

As a result, subsequent calls to find x or its parents become cheap.

From here on, we let rank be defined by the union algorithm

For root node, rank is same as depth
But once a node becomes a non-root, its rank stays fixed,
even when path compression decreases its depth.

84 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Further improvement

Can we combine the best elements of the two approaches?
Threaded trees use eager union while the original approach used a lazy approach

Eager approach is better for find, while being lazy is better for union.
So, why not use lazy approach for union and eager approach for find?

Path compression: Retains lazy union, but when a find(x) is called, eagerly
promotes x to the level below the root

Actually, we promote x, π(x), π(π(x)), π(π(π(x))) and so on.

As a result, subsequent calls to find x or its parents become cheap.

From here on, we let rank be defined by the union algorithm

For root node, rank is same as depth
But once a node becomes a non-root, its rank stays fixed,
even when path compression decreases its depth.

85 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Further improvement

Can we combine the best elements of the two approaches?
Threaded trees use eager union while the original approach used a lazy approach
Eager approach is better for find, while being lazy is better for union.

So, why not use lazy approach for union and eager approach for find?

Path compression: Retains lazy union, but when a find(x) is called, eagerly
promotes x to the level below the root

Actually, we promote x, π(x), π(π(x)), π(π(π(x))) and so on.

As a result, subsequent calls to find x or its parents become cheap.

From here on, we let rank be defined by the union algorithm

For root node, rank is same as depth
But once a node becomes a non-root, its rank stays fixed,
even when path compression decreases its depth.

86 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Further improvement

Can we combine the best elements of the two approaches?
Threaded trees use eager union while the original approach used a lazy approach
Eager approach is better for find, while being lazy is better for union.
So, why not use lazy approach for union and eager approach for find?

Path compression: Retains lazy union, but when a find(x) is called, eagerly
promotes x to the level below the root

Actually, we promote x, π(x), π(π(x)), π(π(π(x))) and so on.

As a result, subsequent calls to find x or its parents become cheap.

From here on, we let rank be defined by the union algorithm

For root node, rank is same as depth
But once a node becomes a non-root, its rank stays fixed,
even when path compression decreases its depth.

87 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Further improvement

Can we combine the best elements of the two approaches?
Threaded trees use eager union while the original approach used a lazy approach
Eager approach is better for find, while being lazy is better for union.
So, why not use lazy approach for union and eager approach for find?

Path compression: Retains lazy union, but when a find(x) is called, eagerly
promotes x to the level below the root

Actually, we promote x, π(x), π(π(x)), π(π(π(x))) and so on.

As a result, subsequent calls to find x or its parents become cheap.

From here on, we let rank be defined by the union algorithm

For root node, rank is same as depth
But once a node becomes a non-root, its rank stays fixed,
even when path compression decreases its depth.

88 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Further improvement

Can we combine the best elements of the two approaches?
Threaded trees use eager union while the original approach used a lazy approach
Eager approach is better for find, while being lazy is better for union.
So, why not use lazy approach for union and eager approach for find?

Path compression: Retains lazy union, but when a find(x) is called, eagerly
promotes x to the level below the root

Actually, we promote x, π(x), π(π(x)), π(π(π(x))) and so on.

As a result, subsequent calls to find x or its parents become cheap.

From here on, we let rank be defined by the union algorithm

For root node, rank is same as depth
But once a node becomes a non-root, its rank stays fixed,
even when path compression decreases its depth.

89 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Further improvement

Can we combine the best elements of the two approaches?
Threaded trees use eager union while the original approach used a lazy approach
Eager approach is better for find, while being lazy is better for union.
So, why not use lazy approach for union and eager approach for find?

Path compression: Retains lazy union, but when a find(x) is called, eagerly
promotes x to the level below the root

Actually, we promote x, π(x), π(π(x)), π(π(π(x))) and so on.

As a result, subsequent calls to find x or its parents become cheap.

From here on, we let rank be defined by the union algorithm

For root node, rank is same as depth
But once a node becomes a non-root, its rank stays fixed,
even when path compression decreases its depth.

90 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Further improvement

Can we combine the best elements of the two approaches?
Threaded trees use eager union while the original approach used a lazy approach
Eager approach is better for find, while being lazy is better for union.
So, why not use lazy approach for union and eager approach for find?

Path compression: Retains lazy union, but when a find(x) is called, eagerly
promotes x to the level below the root

Actually, we promote x, π(x), π(π(x)), π(π(π(x))) and so on.

As a result, subsequent calls to find x or its parents become cheap.

From here on, we let rank be defined by the union algorithm

For root node, rank is same as depth
But once a node becomes a non-root, its rank stays fixed,
even when path compression decreases its depth.

91 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Disjoint sets w/ Path compression: Illustration
find(I) followed by find(K)

Figure 5.7 The effect of path compression: find(I) followed by find(K).

B0

D0

I0 J0 K0

H0

C1

1 G1

A3

F

E2

−→
B0

0D

K0

J0

I0

H0

C1 F1

G1

A3

E2

−→ B0

D H0 J0

I0 K0 G1C1 F1E2

A

0

3

little more careful to maintain our data structure in good shape. As any housekeeper knows,
a little extra effort put into routine maintenance can pay off handsomely in the long run, by
forestalling major calamities. We have in mind a particular maintenance operation for our
union-find data structure, intended to keep the trees short— during each find, when a series
of parent pointers is followed up to the root of a tree, we will change all these pointers so
that they point directly to the root (Figure 5.7). This path compression heuristic only slightly
increases the time needed for a find and is easy to code.

function find(x)
if x �= π(x) : π(x) = find(π(x))
return π(x)

The benefit of this simple alteration is long-term rather than instantaneous and thus neces-
sitates a particular kind of analysis: we need to look at sequences of find and union opera-
tions, starting from an empty data structure, and determine the average time per operation.
This amortized cost turns out to be just barely more than O(1), down from the earlier O(log n).

Think of the data structure as having a “top level” consisting of the root nodes, and below
it, the insides of the trees. There is a division of labor: find operations (with or without path

141

92 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Sets w/ Path compression: Amortized analysis

Amortized cost per operation of n set operations is O(log∗ n) where

log∗ x = smallest k such that log(log(· · · log︸ ︷︷ ︸
k times

(x) · · ·)) = 1

Note: log∗(x) ≤ 5 for virtually any n of practical relevance. Specifically,

log∗(265536) = log∗(22
22
2

) = 5

Note that 265536 is approximately a 20, 000 digit decimal number.
We will never be able to store input of that size, at least not in our universe. (Universe
contains may be 10100 elementary particles.)
So, we might as well treat log∗(n) as O(1).

93 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Sets w/ Path compression: Amortized analysis

Amortized cost per operation of n set operations is O(log∗ n) where

log∗ x = smallest k such that log(log(· · · log︸ ︷︷ ︸
k times

(x) · · ·)) = 1

Note: log∗(x) ≤ 5 for virtually any n of practical relevance. Specifically,

log∗(265536) = log∗(22
22
2

) = 5

Note that 265536 is approximately a 20, 000 digit decimal number.
We will never be able to store input of that size, at least not in our universe. (Universe
contains may be 10100 elementary particles.)
So, we might as well treat log∗(n) as O(1).

94 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Sets w/ Path compression: Amortized analysis

Amortized cost per operation of n set operations is O(log∗ n) where

log∗ x = smallest k such that log(log(· · · log︸ ︷︷ ︸
k times

(x) · · ·)) = 1

Note: log∗(x) ≤ 5 for virtually any n of practical relevance. Specifically,

log∗(265536) = log∗(22
22
2

) = 5

Note that 265536 is approximately a 20, 000 digit decimal number.
We will never be able to store input of that size, at least not in our universe. (Universe
contains may be 10100 elementary particles.)
So, we might as well treat log∗(n) as O(1).

95 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Path compression: Amortized analysis (2)
For n operations, rank of any node falls in the range [0, log n]

Divide this range into following groups:

[1], [2], [3–4], [5–16], [17–216], [216 + 1–265536], . . .

Each range is of the form [k–2k−1]

Let G(v) be the group rank(v) belongs to: G(v) = log∗(rank(v))

Note: when a node becomes a non-root, its rank never changes

Key Idea

Give an “allowance” to a node when it becomes a non-root. This allowance will be
used to pay costs of path compression operations involving this node.
For a node whose rank is in the range [k–2k−1], the allowance is 2k−1.

96 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Path compression: Amortized analysis (2)
For n operations, rank of any node falls in the range [0, log n]

Divide this range into following groups:

[1], [2], [3–4], [5–16], [17–216], [216 + 1–265536], . . .

Each range is of the form [k–2k−1]

Let G(v) be the group rank(v) belongs to: G(v) = log∗(rank(v))

Note: when a node becomes a non-root, its rank never changes

Key Idea

Give an “allowance” to a node when it becomes a non-root. This allowance will be
used to pay costs of path compression operations involving this node.
For a node whose rank is in the range [k–2k−1], the allowance is 2k−1.

97 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Path compression: Amortized analysis (2)
For n operations, rank of any node falls in the range [0, log n]

Divide this range into following groups:

[1], [2], [3–4], [5–16], [17–216], [216 + 1–265536], . . .

Each range is of the form [k–2k−1]

Let G(v) be the group rank(v) belongs to: G(v) = log∗(rank(v))

Note: when a node becomes a non-root, its rank never changes

Key Idea

Give an “allowance” to a node when it becomes a non-root. This allowance will be
used to pay costs of path compression operations involving this node.
For a node whose rank is in the range [k–2k−1], the allowance is 2k−1.

98 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Path compression: Amortized analysis (2)
For n operations, rank of any node falls in the range [0, log n]

Divide this range into following groups:

[1], [2], [3–4], [5–16], [17–216], [216 + 1–265536], . . .

Each range is of the form [k–2k−1]

Let G(v) be the group rank(v) belongs to: G(v) = log∗(rank(v))

Note: when a node becomes a non-root, its rank never changes

Key Idea

Give an “allowance” to a node when it becomes a non-root. This allowance will be
used to pay costs of path compression operations involving this node.
For a node whose rank is in the range [k–2k−1], the allowance is 2k−1.

99 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Path compression: Amortized analysis (2)
For n operations, rank of any node falls in the range [0, log n]

Divide this range into following groups:

[1], [2], [3–4], [5–16], [17–216], [216 + 1–265536], . . .

Each range is of the form [k–2k−1]

Let G(v) be the group rank(v) belongs to: G(v) = log∗(rank(v))

Note: when a node becomes a non-root, its rank never changes

Key Idea

Give an “allowance” to a node when it becomes a non-root. This allowance will be
used to pay costs of path compression operations involving this node.

For a node whose rank is in the range [k–2k−1], the allowance is 2k−1.

100 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Path compression: Amortized analysis (2)
For n operations, rank of any node falls in the range [0, log n]

Divide this range into following groups:

[1], [2], [3–4], [5–16], [17–216], [216 + 1–265536], . . .

Each range is of the form [k–2k−1]

Let G(v) be the group rank(v) belongs to: G(v) = log∗(rank(v))

Note: when a node becomes a non-root, its rank never changes

Key Idea

Give an “allowance” to a node when it becomes a non-root. This allowance will be
used to pay costs of path compression operations involving this node.
For a node whose rank is in the range [k–2k−1], the allowance is 2k−1.

101 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Total allowance handed out

Recall that number of nodes of rank r is at most n/2r

Recall that a node of rank is in the range [k–2k−1] is given an allowance of 2k−1.

Total allowance handed out to nodes with ranks in the range [k–2k−1] is therefore
given by

2k−1
(n
2k

+
n

2k+1
+ · · ·+ n

22k−1

)
≤ 2k−1 n

2k−1
= n

Since total number of ranges is log∗ n, total allowance granted to all nodes is n log∗ n

We will spread this cost across all n operations, thus contributing O(log∗ n) to each
operation.

102 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Total allowance handed out

Recall that number of nodes of rank r is at most n/2r

Recall that a node of rank is in the range [k–2k−1] is given an allowance of 2k−1.

Total allowance handed out to nodes with ranks in the range [k–2k−1] is therefore
given by

2k−1
(n
2k

+
n

2k+1
+ · · ·+ n

22k−1

)
≤ 2k−1 n

2k−1
= n

Since total number of ranges is log∗ n, total allowance granted to all nodes is n log∗ n

We will spread this cost across all n operations, thus contributing O(log∗ n) to each
operation.

103 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Total allowance handed out

Recall that number of nodes of rank r is at most n/2r

Recall that a node of rank is in the range [k–2k−1] is given an allowance of 2k−1.

Total allowance handed out to nodes with ranks in the range [k–2k−1] is therefore
given by

2k−1
(n
2k

+
n

2k+1
+ · · ·+ n

22k−1

)
≤ 2k−1 n

2k−1
= n

Since total number of ranges is log∗ n, total allowance granted to all nodes is n log∗ n

We will spread this cost across all n operations, thus contributing O(log∗ n) to each
operation.

104 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Total allowance handed out

Recall that number of nodes of rank r is at most n/2r

Recall that a node of rank is in the range [k–2k−1] is given an allowance of 2k−1.

Total allowance handed out to nodes with ranks in the range [k–2k−1] is therefore
given by

2k−1
(n
2k

+
n

2k+1
+ · · ·+ n

22k−1

)
≤ 2k−1 n

2k−1
= n

Since total number of ranges is log∗ n, total allowance granted to all nodes is n log∗ n

We will spread this cost across all n operations, thus contributing O(log∗ n) to each
operation.

105 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Total allowance handed out

Recall that number of nodes of rank r is at most n/2r

Recall that a node of rank is in the range [k–2k−1] is given an allowance of 2k−1.

Total allowance handed out to nodes with ranks in the range [k–2k−1] is therefore
given by

2k−1
(n
2k

+
n

2k+1
+ · · ·+ n

22k−1

)
≤ 2k−1 n

2k−1
= n

Since total number of ranges is log∗ n, total allowance granted to all nodes is n log∗ n

We will spread this cost across all n operations, thus contributing O(log∗ n) to each
operation.

106 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all find’s

Cost of a find equals # of parent pointers followed

Each pointer followed is updated to point to root of current set.

Key idea: Charge the cost of updating π(p) to:
Case 1: If G(π(p)) ̸= G(p), then charge it to the current find operation

Can apply only log∗ n times: a leaf’s G-value is at least 1, and the root’s G-value is at most log∗ n.
Adds only log∗ n to cost of find

Case 2: Otherwise, charge it to p’s allowance.

Need to show that we have enough allowance to to pay each time this case occurs.

107 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all find’s

Cost of a find equals # of parent pointers followed

Each pointer followed is updated to point to root of current set.

Key idea: Charge the cost of updating π(p) to:
Case 1: If G(π(p)) ̸= G(p), then charge it to the current find operation

Can apply only log∗ n times: a leaf’s G-value is at least 1, and the root’s G-value is at most log∗ n.
Adds only log∗ n to cost of find

Case 2: Otherwise, charge it to p’s allowance.

Need to show that we have enough allowance to to pay each time this case occurs.

108 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all find’s

Cost of a find equals # of parent pointers followed

Each pointer followed is updated to point to root of current set.

Key idea: Charge the cost of updating π(p) to:
Case 1: If G(π(p)) ̸= G(p), then charge it to the current find operation
Can apply only log∗ n times: a leaf’s G-value is at least 1, and the root’s G-value is at most log∗ n.

Adds only log∗ n to cost of find

Case 2: Otherwise, charge it to p’s allowance.

Need to show that we have enough allowance to to pay each time this case occurs.

109 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all find’s

Cost of a find equals # of parent pointers followed

Each pointer followed is updated to point to root of current set.

Key idea: Charge the cost of updating π(p) to:
Case 1: If G(π(p)) ̸= G(p), then charge it to the current find operation
Can apply only log∗ n times: a leaf’s G-value is at least 1, and the root’s G-value is at most log∗ n.
Adds only log∗ n to cost of find

Case 2: Otherwise, charge it to p’s allowance.

Need to show that we have enough allowance to to pay each time this case occurs.

110 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all find’s

Cost of a find equals # of parent pointers followed

Each pointer followed is updated to point to root of current set.

Key idea: Charge the cost of updating π(p) to:
Case 1: If G(π(p)) ̸= G(p), then charge it to the current find operation
Can apply only log∗ n times: a leaf’s G-value is at least 1, and the root’s G-value is at most log∗ n.
Adds only log∗ n to cost of find

Case 2: Otherwise, charge it to p’s allowance.
Need to show that we have enough allowance to to pay each time this case occurs.

111 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all find’s (2)
If π(p) is updated, then the rank of p’s parent increases.

Let p be involved in a series of find’s, with qi being its parent after the ith find. Note

rank(p) < rank(q0) < rank(q1) < rank(q2) < · · ·

Let m be the number of such operations before p’s parent has a higher G-value than p, i.e.,

G(p) = G(qm) < G(qm+1).

Recall that
A G(p) = r then r corresponds to a range [k–2k−1] where k ≤ rank(p) ≤ 2k−1. Since
G(p) = G(qm), qm ≤ 2k−1

The allowance given to p is also 2k−1

So, there is enough allowance for all promotions up to m.

After m+ 1th find, the find operation will pay for pointer updates, as G(π(p)) > G(p)

from here on.

112 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all find’s (2)
If π(p) is updated, then the rank of p’s parent increases.

Let p be involved in a series of find’s, with qi being its parent after the ith find. Note

rank(p) < rank(q0) < rank(q1) < rank(q2) < · · ·

Let m be the number of such operations before p’s parent has a higher G-value than p, i.e.,

G(p) = G(qm) < G(qm+1).

Recall that
A G(p) = r then r corresponds to a range [k–2k−1] where k ≤ rank(p) ≤ 2k−1. Since
G(p) = G(qm), qm ≤ 2k−1

The allowance given to p is also 2k−1

So, there is enough allowance for all promotions up to m.

After m+ 1th find, the find operation will pay for pointer updates, as G(π(p)) > G(p)

from here on.

113 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all find’s (2)
If π(p) is updated, then the rank of p’s parent increases.

Let p be involved in a series of find’s, with qi being its parent after the ith find. Note

rank(p) < rank(q0) < rank(q1) < rank(q2) < · · ·

Let m be the number of such operations before p’s parent has a higher G-value than p, i.e.,

G(p) = G(qm) < G(qm+1).

Recall that
A G(p) = r then r corresponds to a range [k–2k−1] where k ≤ rank(p) ≤ 2k−1. Since
G(p) = G(qm), qm ≤ 2k−1

The allowance given to p is also 2k−1

So, there is enough allowance for all promotions up to m.

After m+ 1th find, the find operation will pay for pointer updates, as G(π(p)) > G(p)

from here on.

114 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all find’s (2)
If π(p) is updated, then the rank of p’s parent increases.

Let p be involved in a series of find’s, with qi being its parent after the ith find. Note

rank(p) < rank(q0) < rank(q1) < rank(q2) < · · ·

Let m be the number of such operations before p’s parent has a higher G-value than p, i.e.,

G(p) = G(qm) < G(qm+1).

Recall that
A G(p) = r then r corresponds to a range [k–2k−1] where k ≤ rank(p) ≤ 2k−1. Since
G(p) = G(qm), qm ≤ 2k−1

The allowance given to p is also 2k−1

So, there is enough allowance for all promotions up to m.

After m+ 1th find, the find operation will pay for pointer updates, as G(π(p)) > G(p)

from here on.

115 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all find’s (2)
If π(p) is updated, then the rank of p’s parent increases.

Let p be involved in a series of find’s, with qi being its parent after the ith find. Note

rank(p) < rank(q0) < rank(q1) < rank(q2) < · · ·

Let m be the number of such operations before p’s parent has a higher G-value than p, i.e.,

G(p) = G(qm) < G(qm+1).

Recall that
A G(p) = r then r corresponds to a range [k–2k−1] where k ≤ rank(p) ≤ 2k−1. Since
G(p) = G(qm), qm ≤ 2k−1

The allowance given to p is also 2k−1

So, there is enough allowance for all promotions up to m.

After m+ 1th find, the find operation will pay for pointer updates, as G(π(p)) > G(p)

from here on.

116 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all find’s (2)
If π(p) is updated, then the rank of p’s parent increases.

Let p be involved in a series of find’s, with qi being its parent after the ith find. Note

rank(p) < rank(q0) < rank(q1) < rank(q2) < · · ·

Let m be the number of such operations before p’s parent has a higher G-value than p, i.e.,

G(p) = G(qm) < G(qm+1).

Recall that
A G(p) = r then r corresponds to a range [k–2k−1] where k ≤ rank(p) ≤ 2k−1. Since
G(p) = G(qm), qm ≤ 2k−1

The allowance given to p is also 2k−1

So, there is enough allowance for all promotions up to m.

After m+ 1th find, the find operation will pay for pointer updates, as G(π(p)) > G(p)

from here on.

117 / 118

Intro Aggregate Charging Potential Table resizing Disjoint sets Inverted Trees Union by Depth Threaded Trees Path compression

Paying for all find’s (2)
If π(p) is updated, then the rank of p’s parent increases.

Let p be involved in a series of find’s, with qi being its parent after the ith find. Note

rank(p) < rank(q0) < rank(q1) < rank(q2) < · · ·

Let m be the number of such operations before p’s parent has a higher G-value than p, i.e.,

G(p) = G(qm) < G(qm+1).

Recall that
A G(p) = r then r corresponds to a range [k–2k−1] where k ≤ rank(p) ≤ 2k−1. Since
G(p) = G(qm), qm ≤ 2k−1

The allowance given to p is also 2k−1

So, there is enough allowance for all promotions up to m.

After m+ 1th find, the find operation will pay for pointer updates, as G(π(p)) > G(p)

from here on.
118 / 118

	Intro
	Motivation

	Aggregate
	Charging
	Potential
	Table resizing
	Amortized Rehashing
	Vector and String Resizing

	Disjoint sets
	Inverted Trees
	Union by Depth
	Threaded Trees
	Path compression

