CSE 548: Algorithms
 Coping with NP-Completeness

R. Sekar

Coping with NP-Completeness

- Sometimes you are faced with hard problems - problems for which no efficient solutions exist.
- Step 1: Try to show that the problem is $N P$-complete
- This way, you can avoid wasting a lot of time on a fruitless search for an efficient algorithm

Coping with NP-Completeness

- Sometimes you are faced with hard problems - problems for which no efficient solutions exist.
- Step 1: Try to show that the problem is $N P$-complete
- This way, you can avoid wasting a lot of time on a fruitless search for an efficient algorithm
- Step 2a: Sometimes, you may be able to say "let us solve a different problem"
- you may be able leverage some special structure of your problem domain that enables a more efficient solution

Coping with NP-Completeness

- Sometimes you are faced with hard problems - problems for which no efficient solutions exist.
- Step 1: Try to show that the problem is $N P$-complete
- This way, you can avoid wasting a lot of time on a fruitless search for an efficient algorithm
- Step 2a: Sometimes, you may be able to say "let us solve a different problem"
- you may be able leverage some special structure of your problem domain that enables a more efficient solution
- Step 2b: Other times, you are stuck with a difficult problem and you need to make the best of it.
- We discuss different coping strategies in such cases.

Intelligent Exhaustive Search

- Exhaustive search will work for almost any problem

Intelligent Exhaustive Search

- Exhaustive search will work for almost any problem Hamiltonian Tour: Consider an edge e.
- Either $e=(u, v)$ is part of the tour, in which case you can complete the tour by finding a path from u to v in $G-e$.

Intelligent Exhaustive Search

- Exhaustive search will work for almost any problem Hamiltonian Tour: Consider an edge e.
- Either $e=(u, v)$ is part of the tour, in which case you can complete the tour by finding a path from u to v in $G-e$.
- Or, e is not part of the tour, in which case you can find the tour by searching $G-e$.

Intelligent Exhaustive Search

- Exhaustive search will work for almost any problem Hamiltonian Tour: Consider an edge e.
- Either $e=(u, v)$ is part of the tour, in which case you can complete the tour by finding a path from u to v in $G-e$.
- Or, e is not part of the tour, in which case you can find the tour by searching $G-e$. Either case leads to a recurrence $T(m)=2 T(m-1)$, i.e., $T(m)=O\left(2^{m}\right)$. (Here m is the number of edge in G.)

Intelligent Exhaustive Search

- Exhaustive search will work for almost any problem

Hamiltonian Tour: Consider an edge e.

- Either $e=(u, v)$ is part of the tour, in which case you can complete the tour by finding a path from u to v in $G-e$.
- Or, e is not part of the tour, in which case you can find the tour by searching $G-e$. Either case leads to a recurrence $T(m)=2 T(m-1)$, i.e., $T(m)=O\left(2^{m}\right)$. (Here m is the number of edge in G.)
SAT: Try all 2^{n} possible truth assignments to the n variables in your formula.

Intelligent Exhaustive Search

- Exhaustive search will work for almost any problem

Hamiltonian Tour: Consider an edge e.

- Either $e=(u, v)$ is part of the tour, in which case you can complete the tour by finding a path from u to v in $G-e$.
- Or, e is not part of the tour, in which case you can find the tour by searching $G-e$. Either case leads to a recurrence $T(m)=2 T(m-1)$, i.e., $T(m)=O\left(2^{m}\right)$. (Here m is the number of edge in G.)
SAT: Try all 2^{n} possible truth assignments to the n variables in your formula.
- The key point is to be intelligent in the way this search is conducted, so that the algorithm is faster than 2^{n} in practice.

Backtracking

- Depth-first approach to perform exhaustive search

Backtracking

- Depth-first approach to perform exhaustive search
- In the above example, first try to find a solution that includes e
- Looking down further, the algorithm will make additional choices of edges to include: $e_{1}, e_{2}, \ldots, e_{k}$
- Only when all paths that include e fail to be Hamiltonian, we consider the alternative (i.e., Hamiltonian path that doesn't include e)

Backtracking

- Depth-first approach to perform exhaustive search
- In the above example, first try to find a solution that includes e
- Looking down further, the algorithm will make additional choices of edges to include: $e_{1}, e_{2}, \ldots, e_{k}$
- Only when all paths that include e fail to be Hamiltonian, we consider the alternative (i.e., Hamiltonian path that doesn't include e)
- Key goal is to recognize and prune failing paths as quickly as possible.

Backtracking Approach for SAT

Backtracking Approach for SAT: Complexity

- There are two cases, based on the variable w chosen for branching:

Case 1: Both w and \bar{w} occur in the formula In this case, both branches are present. Moreover, both w and \bar{w} are eliminated from the formula at this point, so we have the recurrence:

$$
T(n)=2 T(n-2)+O(n)
$$

Backtracking Approach for SAT: Complexity

- There are two cases, based on the variable w chosen for branching:

Case 1: Both w and \bar{w} occur in the formula In this case, both branches are present. Moreover, both w and \bar{w} are eliminated from the formula at this point, so we have the recurrence:

$$
T(n)=2 T(n-2)+O(n)
$$

Case 2: Only one of them is present. In this case, only one of the branches needs exploring, so we have the recurrence

$$
T(n)=T(n-1)+O(n)
$$

Backtracking Approach for SAT: Complexity

- There are two cases, based on the variable w chosen for branching:

Case 1: Both w and \bar{w} occur in the formula In this case, both branches are present. Moreover, both w and \bar{w} are eliminated from the formula at this point, so we have the recurrence:

$$
T(n)=2 T(n-2)+O(n)
$$

Case 2: Only one of them is present. In this case, only one of the branches needs exploring, so we have the recurrence

$$
T(n)=T(n-1)+O(n)
$$

- Clearly, case 1 will dominate, so let us ignore case 2. Case 1 yields a solution of $O\left(2^{n / 2}\right)$ or $O\left(1.414^{n}\right)$, which is much better than 2^{n}.

Backtracking Approach for SAT: Improvements

- We can improve the worst-case bound by choosing a variable that occurs most times

Backtracking Approach for SAT: Improvements

- We can improve the worst-case bound by choosing a variable that occurs most times
- If it occurs k times, then you have the recurrence

$$
T(n)=2 T(n-k)
$$

whose solution is $O\left(2^{n / k}\right)$.

Backtracking Approach for SAT: Improvements

- We can improve the worst-case bound by choosing a variable that occurs most times
- If it occurs k times, then you have the recurrence

$$
T(n)=2 T(n-k)
$$

whose solution is $O\left(2^{n / k}\right)$.

- Of course, you won't be able to repeatedly find a variable that occurs k times, so this solution is meaningless in practice - it just goes to show the exponential pruning effect of a frequently occurring variable

Backtracking Approach for SAT: Improvements

- We can improve the worst-case bound by choosing a variable that occurs most times
- If it occurs k times, then you have the recurrence

$$
T(n)=2 T(n-k)
$$

whose solution is $O\left(2^{n / k}\right)$.

- Of course, you won't be able to repeatedly find a variable that occurs k times, so this solution is meaningless in practice - it just goes to show the exponential pruning effect of a frequently occurring variable
- Another strategy: pick a clause with fewest number of variables, and pick those variables in sequence.

Backtracking Approach for SAT: Improvements

- We can improve the worst-case bound by choosing a variable that occurs most times
- If it occurs k times, then you have the recurrence

$$
T(n)=2 T(n-k)
$$

whose solution is $O\left(2^{n / k}\right)$.

- Of course, you won't be able to repeatedly find a variable that occurs k times, so this solution is meaningless in practice - it just goes to show the exponential pruning effect of a frequently occurring variable
- Another strategy: pick a clause with fewest number of variables, and pick those variables in sequence.
- Exercise: Show that the backtracking algorithm solves 2SAT in polynomial time

Branch and Bound

- Generalization of backtracking to support optimization problems

Branch and Bound

- Generalization of backtracking to support optimization problems
- Requires a lower bound on the cost of solutions that may result from a partial solution
- If the cost is higher than that of a previously encountered solution, then this subproblem need not be explored further.

Branch and Bound

- Generalization of backtracking to support optimization problems
- Requires a lower bound on the cost of solutions that may result from a partial solution
- If the cost is higher than that of a previously encountered solution, then this subproblem need not be explored further.
- Sometimes, we may rely on estimates of cost rather than strict lower bounds.

Branch and Bound for TSP

- Begin with a vertex a - the goal is to compute a TSP that begins and ends at a.

Branch and Bound for TSP

- Begin with a vertex a - the goal is to compute a TSP that begins and ends at a.
- We begin the search by considering an edge from a to its neighbor x, another edge from x to a neighbor of x, and so on.

Branch and Bound for TSP

- Begin with a vertex a - the goal is to compute a TSP that begins and ends at a.
- We begin the search by considering an edge from a to its neighbor x, another edge from x to a neighbor of x, and so on.
- Partial solutions represent a path from a to some vertex b, passing through a set $S \subset V$ of vertices.

Branch and Bound for TSP

- Begin with a vertex a - the goal is to compute a TSP that begins and ends at a.
- We begin the search by considering an edge from a to its neighbor x, another edge from x to a neighbor of x, and so on.
- Partial solutions represent a path from a to some vertex b, passing through a set $S \subset V$ of vertices.
- Completing a partial solution requires the computation of a low cost path from b to a using only vertices in $V-S$

Lower bound on costs of partial TSP solutions

- To complete the path from b to a, we must incur at least the following costs
- Cost of going from b to a vertex in $V-S$, i.e, the minimum weight edge from b to a vertex in $V-S$

Lower bound on costs of partial TSP solutions

- To complete the path from b to a, we must incur at least the following costs
- Cost of going from b to a vertex in $V-S$, i.e, the minimum weight edge from b to a vertex in $V-S$
- Cost of going from a $V-S$ vertex to a, i.e, the minimum weight edge from a to a vertex in $V-S$

Lower bound on costs of partial TSP solutions

- To complete the path from b to a, we must incur at least the following costs
- Cost of going from b to a vertex in $V-S$, i.e, the minimum weight edge from b to a vertex in $V-S$
- Cost of going from a $V-S$ vertex to a, i.e, the minimum weight edge from a to a vertex in $V-S$
- Minimal cost path in $V-S$ that visits all $v \in V-S$
- Note: Lower bound is the cost of MST for $V-S$

Lower bound on costs of partial TSP solutions

- To complete the path from b to a, we must incur at least the following costs
- Cost of going from b to a vertex in $V-S$, i.e, the minimum weight edge from b to a vertex in $V-S$
- Cost of going from a $V-S$ vertex to a, i.e, the minimum weight edge from a to a vertex in $V-S$
- Minimal cost path in $V-S$ that visits all $v \in V-S$
- Note: Lower bound is the cost of MST for $V-S$
- By adding the above three cost components, we arrive at a lower bound on solutions derivable from a partial solution.

Illustration of Branch-and Bound for TSP

Approximation Algorithms

- Relax optimality requirement: permit approximate solutions
- Solutions that are within a certain distance from optimum

Approximation Algorithms

- Relax optimality requirement: permit approximate solutions
- Solutions that are within a certain distance from optimum
- Not heuristics: Approximate algorithms guarantee that solutions are within a certain distance from optimal
- Differs from heuristics that can sometimes return very bad solutions.

Approximation Algorithms

- Relax optimality requirement: permit approximate solutions
- Solutions that are within a certain distance from optimum
- Not heuristics: Approximate algorithms guarantee that solutions are within a certain distance from optimal
- Differs from heuristics that can sometimes return very bad solutions.
- How to define "distance from optimal?"

Approximation Algorithms

- Relax optimality requirement: permit approximate solutions
- Solutions that are within a certain distance from optimum
- Not heuristics: Approximate algorithms guarantee that solutions are within a certain distance from optimal
- Differs from heuristics that can sometimes return very bad solutions.
- How to define "distance from optimal?"

Additive: Optimal solution S_{O} and the Solution S_{A} returned by approximation algorithm differ only by a constant.

- Quality of approximation is extremely good, but unfortunately, most problems don't admit such approximations

Approximation Algorithms

- Relax optimality requirement: permit approximate solutions
- Solutions that are within a certain distance from optimum
- Not heuristics: Approximate algorithms guarantee that solutions are within a certain distance from optimal
- Differs from heuristics that can sometimes return very bad solutions.
- How to define "distance from optimal?"

Additive: Optimal solution S_{O} and the Solution S_{A} returned by approximation algorithm differ only by a constant.

- Quality of approximation is extremely good, but unfortunately, most problems don't admit such approximations

Factor: S_{O} and S_{A} are related by a factor.

- Most known approximation algorithms fall into this category.

Approximation Factors

Constant: $S_{A} \leq k S_{O}$ for some fixed constant k.

- Examples: Vertex cover, Facility location, ...

Approximation Factors

Constant: $S_{A} \leq k S_{O}$ for some fixed constant k.

- Examples: Vertex cover, Facility location, ...

Logarithmic: $S_{A} \leq O\left(\log ^{k} n\right) \cdot S_{O}$.

- Examples: Set cover, dominating set, ...

Approximation Factors

Constant: $S_{A} \leq k S_{O}$ for some fixed constant k.

- Examples: Vertex cover, Facility location, ...

Logarithmic: $S_{A} \leq O\left(\log ^{k} n\right) \cdot S_{O}$.

- Examples: Set cover, dominating set, ...

Polynomial: $S_{A} \leq O\left(n^{k}\right) \cdot S_{O}$.

- Examples: Max Clique, Independent set, graph coloring, ...

Approximation Factors

Constant: $S_{A} \leq k S_{O}$ for some fixed constant k.

- Examples: Vertex cover, Facility location, ...

Logarithmic: $S_{A} \leq O\left(\log ^{k} n\right) \cdot S_{O}$.

- Examples: Set cover, dominating set, ...

Polynomial: $S_{A} \leq O\left(n^{k}\right) \cdot S_{O}$.

- Examples: Max Clique, Independent set, graph coloring, ...

PTAS: $S_{A} \leq(1+\epsilon) \cdot S_{O}$ for any $\epsilon>0$.
("Polynomial-time approximation scheme")

Approximation Factors

Constant: $S_{A} \leq k S_{O}$ for some fixed constant k.

- Examples: Vertex cover, Facility location, ...

Logarithmic: $S_{A} \leq O\left(\log ^{k} n\right) \cdot S_{O}$.

- Examples: Set cover, dominating set, ...

Polynomial: $S_{A} \leq O\left(n^{k}\right) \cdot S_{O}$.

- Examples: Max Clique, Independent set, graph coloring, ...

PTAS: $S_{A} \leq(1+\epsilon) \cdot S_{O}$ for any $\epsilon>0$.
("Polynomial-time approximation scheme")
FPTAS: PTAS with runtime $O\left(\epsilon^{-k}\right)$ for some k. ("Fully PTAS")

- Examples: Knapsack, Bin-packing, Euclidean TSP, ...

Bin Packing

Problem

Pack objects of different weight into bins that have a fixed capacity in such a way that minimizes bins used.

Bin Packing

Problem

Pack objects of different weight into bins that have a fixed capacity in such a way that minimizes bins used.

- Obvious similarity to Knapsack
- Bin-packing is $N P$-hard
- Very good (and often very simple) approximation algorithms exist

First-fit Algorithm

A simple, greedy algorithm

```
FirstFit(x[1..n])
    for i=1 to ndo
    Put }x[i]\mathrm{ into the first open bin large enough to hold it
```


First-fit Algorithm

A simple, greedy algorithm

```
FirstFit(x[1..n])
    for \(i=1\) to \(n\) do
    Put \(x[i]\) into the first open bin large enough to hold it
```


Theorem

All open bins, except possibly one, are more than half-full

First-fit Algorithm

A simple, greedy algorithm

```
FirstFit(x[1..n])
    for }i=1\mathrm{ to }n\mathrm{ do
    Put x[i] into the first open bin large enough to hold it
```


Theorem

All open bins, except possibly one, are more than half-full
Proof: Suppose that there are two bins b and b^{\prime} that are less than half-full. Then, items in b^{\prime} would have fitted into b, and so the FF algorithm would never have opened the $\operatorname{bin} b^{\prime}-$ a contradiction.

First-fit Algorithm

A simple, greedy algorithm

```
FirstFit(x[1..n])
for i=1 to ndo
    Put x[i] into the first open bin large enough to hold it
```


Theorem

All open bins, except possibly one, are more than half-full
Proof: Suppose that there are two bins b and b^{\prime} that are less than half-full. Then, items in b^{\prime} would have fitted into b, and so the FF algorithm would never have opened the $\operatorname{bin} b^{\prime}-$ a contradiction.

Theorem

First-fit is optimal within a factor of 2: specifically, $S_{A}<2 S_{O}+1$.

Best-Fit Algorithm

- Another simple, greedy algorithm
- Instead of using the first bin that will can hold $x[i]$, use the open bin whose remaining capacity is closest to $x[i]$
- Prefers to keep bins close to full.
- Factor-2 optimality can established easily.

Other algorithms for Bin-packing

- First-fit decreasing strategy first sorts the items so that $x[i] \geq x[i+1]$ and then runs first-fit.

Other algorithms for Bin-packing

- First-fit decreasing strategy first sorts the items so that $x[i] \geq x[i+1]$ and then runs first-fit.
- Best-fit decreasing strategy first sorts the items so that $x[i] \geq x[i+1]$ and then runs best-fit.

Other algorithms for Bin-packing

- First-fit decreasing strategy first sorts the items so that $x[i] \geq x[i+1]$ and then runs first-fit.
- Best-fit decreasing strategy first sorts the items so that $x[i] \geq x[i+1]$ and then runs best-fit.
- Both FFD and BFD achieve approximation factors of $11 / 9 S_{O}+6 / 9$.

Set Cover

Problem

Given a collection S_{1}, \ldots, S_{m} of subsets of B, find a minimum collection $S_{i 1}, \ldots, S_{i_{k}}$ such that $\bigcup_{j=1}^{k} S_{i j}=B$

Set Cover

Problem

Given a collection S_{1}, \ldots, S_{m} of subsets of B, find a minimum collection $S_{i,}, \ldots, S_{i_{k}}$ such that $\bigcup_{j=1}^{k} S_{i j}=B$

Greedy Set Cover Algorithm
$\operatorname{GSC}(S, B)$
cover $=\emptyset ;$ covered $=\emptyset$
while covered $\neq B$ do
Let new be the set in S - cover containing the maximum number of elements of B - covered
add new to cover; covered $=$ covered \cup new
return cover

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n=|B|$

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n=|B|$

Proof:

- Let k be the size of optimal cover, and n_{t} be the number of elements left uncovered after t steps of GSC

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n=|B|$

Proof:

- Let k be the size of optimal cover, and n_{t} be the number of elements left uncovered after t steps of GSC
- These n_{t} elements are covered by k sets in optimal cover \Rightarrow these k sets must cover n_{t} / k uncovered elements on average.

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n=|B|$

Proof:

- Let k be the size of optimal cover, and n_{t} be the number of elements left uncovered after t steps of GSC
- These n_{t} elements are covered by k sets in optimal cover \Rightarrow these k sets must cover n_{t} / k uncovered elements on average.
- Thus, GSC will find at least one set that covers n_{t} / k elements.

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n=|B|$

Proof:

- Let k be the size of optimal cover, and n_{t} be the number of elements left uncovered after t steps of GSC
- These n_{t} elements are covered by k sets in optimal cover \Rightarrow these k sets must cover n_{t} / k uncovered elements on average.
- Thus, GSC will find at least one set that covers n_{t} / k elements.
- This yields the recurrence for bounding uncovered elements:
$U(t+1)=n_{t}-n_{t} / k=n_{t}(1-1 / k)=U(t)(1-1 / k)$

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n=|B|$

Proof:

- Let k be the size of optimal cover, and n_{t} be the number of elements left uncovered after t steps of GSC
- These n_{t} elements are covered by k sets in optimal cover \Rightarrow these k sets must cover n_{t} / k uncovered elements on average.
- Thus, GSC will find at least one set that covers n_{t} / k elements.
- This yields the recurrence for bounding uncovered elements:

$$
U(t+1)=n_{t}-n_{t} / k=n_{t}(1-1 / k)=U(t)(1-1 / k)
$$

- The solution to recurrence is $n(1-1 / k)^{t}<n e^{-t / k}$

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n=|B|$

Proof:

- Let k be the size of optimal cover, and n_{t} be the number of elements left uncovered after t steps of GSC
- These n_{t} elements are covered by k sets in optimal cover \Rightarrow these k sets must cover n_{t} / k uncovered elements on average.
- Thus, GSC will find at least one set that covers n_{t} / k elements.
- This yields the recurrence for bounding uncovered elements:

$$
U(t+1)=n_{t}-n_{t} / k=n_{t}(1-1 / k)=U(t)(1-1 / k)
$$

- The solution to recurrence is $n(1-1 / k)^{t}<n e^{-t / k}$
- Thus, after $t=k \ln n$ steps, less than 1 (i.e., no) elements uncovered

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n=|B|$

Proof:

- Let k be the size of optimal cover, and n_{t} be the number of elements left uncovered after t steps of GSC
- These n_{t} elements are covered by k sets in optimal cover \Rightarrow these k sets must cover n_{t} / k uncovered elements on average.
- Thus, GSC will find at least one set that covers n_{t} / k elements.
- This yields the recurrence for bounding uncovered elements:

$$
U(t+1)=n_{t}-n_{t} / k=n_{t}(1-1 / k)=U(t)(1-1 / k)
$$

- The solution to recurrence is $n(1-1 / k)^{t}<n e^{-t / k}$
- Thus, after $t=k \ln n$ steps, less than 1 (i.e., no) elements uncovered
- Thus, GSC computes a cover at most In n times the optimal cover.

Vertex Cover

- Note that a vertex cover is a set cover for (\mathcal{S}, E), where

$$
\mathcal{S}=\{\{(v, u) \mid(v, u) \in E\} \mid v \in V\}
$$

- i.e., \mathcal{S} contains a set for each vertex; this set lists all edges incident on v

Vertex Cover

- Note that a vertex cover is a set cover for (\mathcal{S}, E), where

$$
\mathcal{S}=\{\{(v, u) \mid(v, u) \in E\} \mid v \in V\}
$$

- i.e., \mathcal{S} contains a set for each vertex; this set lists all edges incident on v
- Thus GSC is an approximate algorithm for vertex cover.

Vertex Cover

- Note that a vertex cover is a set cover for (\mathcal{S}, E), where

$$
\mathcal{S}=\{\{(v, u) \mid(v, u) \in E\} \mid v \in V\}
$$

- i.e., \mathcal{S} contains a set for each vertex; this set lists all edges incident on v
- Thus GSC is an approximate algorithm for vertex cover.
- But $\ln n$ is not a factor to be thrilled about - can we do better?
- Actually, we can do much better! That too with a very simple algorithm.

Vertex Cover

Consider any edge (u, v).

- Either u or v must belong to any vertex cover.
- If we accept $S_{A}=2 S_{O}$, we can avoid the guesswork by simply picking both vertices!

Vertex Cover

Consider any edge (u, v).

- Either u or v must belong to any vertex cover.
- If we accept $S_{A}=2 S_{O}$, we can avoid the guesswork by simply picking both vertices!

Approximate Vertex Cover Algorithm
$\operatorname{AVC}(G=(V, E))$
$C=\emptyset$
while G is not empty
pick any $(u, v) \in E$
$C=C \cup\{u, v\}$
$G=G-\{u, v\}$
return C

Euclidean TSP

- Our starting point is once again the MST
- Note that no TSP solution can be smaller than MST
- Deleting an edge from TSP solution yields a spanning tree
- Simple algorithm:
- Start with the MST

Approximating Euclidean TSP: An Illustration

- Start with the MST
- Make a tour that uses each MST edge twice (forward and backward)
- This tour is like TSP in ending at the starting node, and differs from TSP by visiting some vertices and edges twice

Approximating Euclidean TSP: An Illustration (2)

- Avoid revisits by short-circuiting to next unvisited vertex
- By triangle inequality, short-circuit distance can only be less than the distance following MST edges.
- Thus, tour length less than $2 x M S T$, i.e., approximate within a factor 2 .

Knapsack

Knap01($w, v, n, W)$

$$
V=\sum_{j=0}^{n} v[j]
$$

$$
K[j, 0]=0, \forall 0 \leq j \leq V
$$

$$
\text { for } j=1 \text { to } n \text { do }
$$

$$
\text { for } v=1 \text { to } V \text { do }
$$

$$
\text { if } v[j]>v \text { then } K[j, v]=K[j-1, v]
$$

$$
\text { else } K[j, v]=\min (K[j-1, v], K[j-1, v-v[j]]+w[j])
$$

return maximum v such that $K[n, v] \leq W$

- Computes minimum weight of knapsack for a given value.
- Iterates over all possible items and all possible values: $O(n V)$
- we derive a polynomial time approximate algorithm from this

FPTAS for 0-1 Knapsack

Knap01FPTAS (w, v, n, W, ϵ)

$$
\begin{aligned}
& v_{i}^{\prime}=\left\lfloor\frac{v_{i}}{\max _{1 \leq j \leq n} v_{j}} \cdot \frac{n}{\epsilon}\right\rfloor, \text { for } 1 \leq i \leq n \\
& \operatorname{Knap01}\left(w, v^{\prime}, n, W\right)
\end{aligned}
$$

- Rescaling consists of two steps:
- Express value of each item relative to the most valuable item - If we worked with real values, this step won't change the optimal solution
- Multiply relative values by a factor n / ϵ to get an integer
- Floor operation introduces an error ≤ 1 in $v_{i}^{\prime}($ e.g., $\lfloor 3.99\rfloor=3$)
- Error in Knap01 output $=$ error in $\sum v_{i}^{\prime}$, which is at most $n \cdot 1$
- We scale each v_{i}^{\prime} by n / ϵ, so relative error is $n /(n / \epsilon)=\epsilon$

FPTAS for 0-1 Knapsack: Runtime

Knap01FPTAS (w, v, n, W, ϵ)

$$
\begin{aligned}
& v_{i}^{\prime}=\left\lfloor\frac{v_{i}}{\max _{1 \leq j \leq n} v_{j}} \cdot \frac{n}{\epsilon}\right\rfloor, \text { for } 1 \leq i \leq n \\
& \text { Knap01 }\left(w, v^{\prime}, n, W\right)
\end{aligned}
$$

- Note that we are using Knap01 with rescaled values, so the complexity is $O\left(n V^{\prime}\right)$.
- Note: $V^{\prime}=\sum_{1}^{n} v_{i}^{\prime} \leq n \cdot \max _{1 \leq j \leq n} v_{j}^{\prime}$
- It is easy to see from definition of v_{i}^{\prime} that $\max _{1 \leq j \leq n} v_{j}^{\prime}=n / \epsilon$. Substituting this into the above equation yields a complexity of:

$$
O\left(n V^{\prime}\right) \leq O\left(n\left(n \cdot \max _{1 \leq i \leq n} v_{i}^{\prime}\right)\right)=O(n(n \cdot(n / \epsilon)))=O\left(n^{3} / \epsilon\right)
$$

- By varying ϵ, we can trade off accuracy against runtime.

