CSE 548: Algorithms

Randomized Algorithms
R. Sekar

Example 1: Routing

- What is the best way to route a packet from X to Y, esp. in high speed, high volume networks

A: Pick the shortest path from X to Y
B: Send the packet to a random node Z, and let Z route it to Y (possibly using a shortest path from Z to Y)

Example 1: Routing

- What is the best way to route a packet from X to Y, esp. in high speed, high volume networks

A: Pick the shortest path from X to Y
B: Send the packet to a random node Z, and let Z route it to Y (possibly using a shortest path from Z to Y)

- Valiant showed in 1981 that surprisingly, B works better!
- Turing award recipient in 2010

Example 2: Transmitting on shared network

- What is the best way for n hosts to share a common a network?

A: Give each host a turn to transmit
B: Maintain a queue of hosts that have something to transmit, and use a FIFO algorithm to grant access
C: Let every one try to transmit. If there is contention, use random choice to resove it.

- Which choice is better?

Topics

1. Intro	Caching
2. Probability Basics	Hashing
Discrete Probability	Universal/Perfect hash
Coupon Collection	Closest pair
Birthday	4. Probabilistic Algorithms
Balls and Bins	Bloom filter
3. Taming distribution	Rabin-Karp
Quicksort	Prime testing

Simplify, Decentralize, Ensure Fairness

- Randomization can often:
- Enable the use of a simpler algorithm
- Cut down the amount of book-keeping
- Support decentralized decision-making
- Ensure fairness
- Examples:

Media access protocol: Avoids need for coordination - important here, because coordination needs connectivity!
Load balancing: Instead of maintaining centralized information about processor loads, dispatch jobs randomly.
Congestion avoidance: Similar to load balancing

Set Theory and Probability

- A countable sample space \mathcal{S} is a nonempty countable set.
- An outcome ω is an element of \mathcal{S}.
- A probability function $\operatorname{Pr}: \mathcal{S} \longrightarrow \mathbb{R}$ is a total function such that
- $\operatorname{Pr}[\omega] \geq 0$ for all $\omega \in \mathcal{S}$, and
- $\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1$

Set Theory and Probability

- A countable sample space \mathcal{S} is a nonempty countable set.
- An outcome ω is an element of \mathcal{S}.
- A probability function $\operatorname{Pr}: \mathcal{S} \longrightarrow \mathbb{R}$ is a total function such that
- $\operatorname{Pr}[\omega] \geq 0$ for all $\omega \in \mathcal{S}$, and
- $\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1$
- An event E is a subset of \mathcal{S}. Its probability is given by:

$$
\operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]
$$

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality
Sum Rule: If $E_{0}, E_{1}, \ldots, E_{n}, \ldots$ are pairwise disjoint events, then

$$
\operatorname{Pr}\left[\bigcup_{n \in \mathbb{N}} E_{n}\right]=\sum_{n \in \mathbb{N}} \operatorname{Pr}\left[E_{n}\right]
$$

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality
Sum Rule: If $E_{0}, E_{1}, \ldots, E_{n}, \ldots$ are pairwise disjoint events, then

$$
\operatorname{Pr}\left[\bigcup_{n \in \mathbb{N}} E_{n}\right]=\sum_{n \in \mathbb{N}} \operatorname{Pr}\left[E_{n}\right]
$$

Complement Rule: $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality
Sum Rule: If $E_{0}, E_{1}, \ldots, E_{n}, \ldots$ are pairwise disjoint events, then

$$
\operatorname{Pr}\left[\bigcup_{n \in \mathbb{N}} E_{n}\right]=\sum_{n \in \mathbb{N}} \operatorname{Pr}\left[E_{n}\right]
$$

Complement Rule: $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$
Difference Rule:

$$
\operatorname{Pr}[B-A]=\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality Sum Rule: If $E_{0}, E_{1}, \ldots, E_{n}, \ldots$ are pairwise disjoint events, then

$$
\operatorname{Pr}\left[\bigcup_{n \in \mathbb{N}} E_{n}\right]=\sum_{n \in \mathbb{N}} \operatorname{Pr}\left[E_{n}\right]
$$

Complement Rule: $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$
Difference Rule:

$$
\operatorname{Pr}[B-A]=\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Inclusion-Exclusion:

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Union Bound: $\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality
Sum Rule: If $E_{0}, E_{1}, \ldots, E_{n}, \ldots$ are pairwise disjoint events, then

$$
\operatorname{Pr}\left[\bigcup_{n \in \mathbb{N}} E_{n}\right]=\sum_{n \in \mathbb{N}} \operatorname{Pr}\left[E_{n}\right]
$$

Complement Rule: $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$
Difference Rule:

$$
\operatorname{Pr}[B-A]=\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Inclusion-Exclusion:

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Union Bound: $\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$
Monotonicity: $A \subseteq B \rightarrow \operatorname{Pr}[A] \leq \operatorname{Pr}[B]$

Uniform Probability Spaces

A finite probability space \mathcal{S} said to be uniform if $\operatorname{Pr}[\omega]$ is the same for all ω. In such spaces:

$$
\operatorname{Pr}[E]=\frac{|E|}{|\mathcal{S}|}
$$

We often this assumption.

Conditional Probability

- Probability of an event under a condition
- The condition limits consideration to a subset of outcomes
- Consider this subset (rather than whole of \mathcal{S}) as the space of all possible outcomes

$$
\operatorname{Pr}[X \mid Y]=\frac{\operatorname{Pr}[X \cap Y]}{\operatorname{Pr}[Y]}
$$

Extending Probability Rules for Conditional Probability

Product Rule 2: $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right]$

Extending Probability Rules for Conditional Probability

Product Rule 2: $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right]$
Product Rule 3: $\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \cdot \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right]$

Extending Probability Rules for Conditional Probability

Product Rule 2: $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right]$
Product Rule 3: $\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \cdot \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right]$
Bayes' Rule: $\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B]}{\operatorname{Pr}[A]}$

Extending Probability Rules for Conditional Probability

Product Rule 2: $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right]$
Product Rule 3: $\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \cdot \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right]$
Bayes' Rule: $\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B]}{\operatorname{Pr}[A]}$

Total Probability Law: $\operatorname{Pr}[A]=\operatorname{Pr}[A \mid E] \cdot \operatorname{Pr}[E]+\operatorname{Pr}[A \mid \bar{E}] \cdot \operatorname{Pr}[\bar{E}]$
Total Probability Law 2: If E_{i} are mutually disjoint and $\operatorname{Pr}\left[\bigcup E_{i}\right]=1$ then

$$
\operatorname{Pr}[A]=\sum \operatorname{Pr}\left[A \mid E_{i}\right] \cdot \operatorname{Pr}\left[E_{i}\right]
$$

Inclusion-Exclusion: $\operatorname{Pr}[A \cup B \mid C]=\operatorname{Pr}[A \mid C]+\operatorname{Pr}[B \mid C]-\operatorname{Pr}[A \cap B \mid C]$

Independence

- An event A is independent of B iff the following (equivalent) conditions hold:
- $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$
- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$
- B is independent of A
- Often, independence is an assumption.
- Definition can be generalized to 3 (or n) events. Events E_{1}, E_{2} and E_{3} a are mutually independent iff all of the following hold:
- $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2}\right]$
- $\operatorname{Pr}\left[E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{2}\right] \cdot \operatorname{Pr}\left[E_{3}\right]$
- $\operatorname{Pr}\left[E_{1} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{3}\right]$
- $\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2}\right] \cdot \operatorname{Pr}\left[E_{3}\right]$

Coupon Collector Problem

- Suppose that your favorite cereal has a coupon inside. There are n types of coupons, but only one of them in each box. How many boxes will you have to buy before you can expect to have all of the n types?
- What is your guess?

Coupon Collector Problem

- Suppose that your favorite cereal has a coupon inside. There are n types of coupons, but only one of them in each box. How many boxes will you have to buy before you can expect to have all of the n types?
- What is your guess?
- Let us work out the expectation. Let us say that you have so far $j-1$ types of coupons, and are now looking to get to the j th type. Let X_{j} denote the number of boxes you need to purchase before you get the $j+1$ th type.

Coupon Collector Problem

- Note $E\left[X_{j}\right]=1 / p_{j}$, where p_{j} is the probability of getting the j th coupon.

Coupon Collector Problem

- Note $E\left[X_{j}\right]=1 / p_{j}$, where p_{j} is the probability of getting the j th coupon.
- Note $p_{j}=(n-j) / n$, so, $E\left[X_{j}\right]=n /(n-j)$

Coupon Collector Problem

- Note $E\left[X_{j}\right]=1 / p_{j}$, where p_{j} is the probability of getting the j th coupon.
- Note $p_{j}=(n-j) / n$, so, $E\left[X_{j}\right]=n /(n-j)$
- We have all n types when we finish the X_{n-1} phase:

$$
E[X]=\sum_{i=0}^{n-1} E\left[X_{j}\right]=\sum_{i=0}^{n-1} n /(n-j)=n H(n)
$$

- Note $H(n)$ is the harmonic sum, and is bounded by $\ln n$

Coupon Collector Problem

- Note $E\left[X_{j}\right]=1 / p_{j}$, where p_{j} is the probability of getting the j th coupon.
- Note $p_{j}=(n-j) / n$, so, $E\left[X_{j}\right]=n /(n-j)$
- We have all n types when we finish the X_{n-1} phase:

$$
E[X]=\sum_{i=0}^{n-1} E\left[X_{j}\right]=\sum_{i=0}^{n-1} n /(n-j)=n H(n)
$$

- Note $H(n)$ is the harmonic sum, and is bounded by $\ln n$
- Perhaps unintuitively, you need to buy In n cereal boxes to obtain one useful coupon.

Birthday Paradox

- What is the smallest size group where there are at least two people with the same birthday?
- 365
- 183
- 61
- 25

Birthday Problem

- The probability that two students have different birthdays: $\frac{364}{365}$
- In a class of n, there are $\binom{n}{2}$ pairs of students to consider.
- If we assume that whether one pair shares a birthday is independent of another, we can simply multiply these probabilities

$$
\operatorname{Pr}(\text { no two persons with same birthday }) \approx\left(\frac{364}{365}\right)^{\binom{n}{2}} \approx\left(\frac{364}{365}\right)^{n^{2} / 2}
$$

- For $n=44$, this formula yields a probability of 7%
- $n=23$ is enough to have better than even chance of finding two with the same birthday.

Birthday Problem: More Accurate Approach

- What is the probability of finding two people with the same birthday in this class?
- There are 365^{n} possible sequences of birthdays for n people
- We assume these are all equally likely
- Number of sequences without repetition: $365 \cdot 364 \cdots(365-(n-1))$
- Probability that no two of n persons have same birthday:

$$
\frac{365}{365} \cdot \frac{365-1}{365} \cdots \frac{365-(n-1)}{365}=\left(1-\frac{0}{365}\right)\left(1-\frac{1}{365}\right) \cdots\left(1-\frac{n-1}{365}\right)
$$

- Use the approximation $(1-x)<e^{-x}$ to derive an upper bound:
Pr (no two persons with same birthday) $<e^{0} \cdot e^{-\frac{1}{365}} \cdot e^{-\frac{n-1}{365}}=e^{\frac{-1}{365} \sum_{i=1}^{n-1} i}=e^{\frac{-n(n-1)}{2+365}}$
- For $n=44$, this evaluates to 7.5%

Birthday Paradox Vs Coupon Collection

- Two sides of the same problem

Coupon Collection: What is the minumum number of samples needed to cover every one of N values
Birthday problem: What is the maximum number of samples that can avoid covering any value more than once?

Birthday Paradox Vs Coupon Collection

- Two sides of the same problem

Coupon Collection: What is the minumum number of samples needed to cover every one of N values
Birthday problem: What is the maximum number of samples that can avoid covering any value more than once?

- So, if we want enough people to ensure that every day of the year is covered as a birthday, we will need $365 \ln 365 \approx 2153$ people!
- Almost 100 times as many as needed for one duplicate birthday!

Balls and Bins

If m balls are thrown at random into n bins:

- What should m be to have more than one ball in some bin?

Balls and Bins

If m balls are thrown at random into n bins:

- What should m be to have more than one ball in some bin?
- Birthday problem

Balls and Bins

If m balls are thrown at random into n bins:

- What should m be to have more than one ball in some bin?
- Birthday problem
- What should m be to have at least one ball per bin?

Balls and Bins

If m balls are thrown at random into n bins:

- What should m be to have more than one ball in some bin?
- Birthday problem
- What should m be to have at least one ball per bin?
- Coupon collection

Balls and Bins

If m balls are thrown at random into n bins:

- What should m be to have more than one ball in some bin?
- Birthday problem
- What should m be to have at least one ball per bin?
- Coupon collection
- What is the maximum number of balls in any bin?
- Such problems arise in load-balancing, hashing, etc.

Balls and Bins: Max Occupancy

- Probability $p_{1, k}$ that the first bin receives at least k balls:
- Choose k balls in $\binom{m}{k}$ ways
- These k balls should fall into the first bin: prob. is $(1 / n)^{k}$
- Other balls may fall anywhere, i.e., probability $1:^{1}$

$$
\binom{m}{k}\left(\frac{1}{n}\right)^{k}=\frac{m \cdot(m-1) \cdots(m-k+1)}{k!n^{k}} \leq \frac{m^{k}}{k!n^{k}}
$$

Balls and Bins: Max Occupancy

- Probability $p_{1, k}$ that the first bin receives at least k balls:
- Choose k balls in $\binom{m}{k}$ ways
- These k balls should fall into the first bin: prob. is $(1 / n)^{k}$
- Other balls may fall anywhere, i.e., probability $1:^{1}$

$$
\binom{m}{k}\left(\frac{1}{n}\right)^{k}=\frac{m \cdot(m-1) \cdots(m-k+1)}{k!n^{k}} \leq \frac{m^{k}}{k!n^{k}}
$$

- Let $m=n$, and use Sterling's approx. $k!\approx \sqrt{2 \pi k}(k / e)^{k}$:

$$
P_{k}=\sum_{i=1}^{n} p_{i, k} \leq n \cdot \frac{1}{k!} \leq n \cdot\left(\frac{e}{k}\right)^{k}
$$

[^0]
Balls and Bins: Max Occupancy

- Probability $p_{1, k}$ that the first bin receives at least k balls:
- Choose k balls in $\binom{m}{k}$ ways
- These k balls should fall into the first bin: prob. is $(1 / n)^{k}$
- Other balls may fall anywhere, i.e., probability $1:^{1}$

$$
\binom{m}{k}\left(\frac{1}{n}\right)^{k}=\frac{m \cdot(m-1) \cdots(m-k+1)}{k!n^{k}} \leq \frac{m^{k}}{k!n^{k}}
$$

- Let $m=n$, and use Sterling's approx. $k!\approx \sqrt{2 \pi k}(k / e)^{k}$:

$$
P_{k}=\sum_{i=1}^{n} p_{i, k} \leq n \cdot \frac{1}{k!} \leq n \cdot\left(\frac{e}{k}\right)^{k}
$$

- Some arithmetic simplification will show that $P_{k}<1 / n$ when

$$
k=\frac{3 \ln n}{\ln \ln n}
$$

[^1]
Balls and Bins: Summary of Results

m balls are thrown at random into n bins:

- Min. one bin with expectation of 2 balls: $m=\sqrt{2 n}$

Balls and Bins: Summary of Results

m balls are thrown at random into n bins:

- Min. one bin with expectation of 2 balls: $m=\sqrt{2 n}$
- No bin expected to be empty: $m=n \ln n$

Balls and Bins: Summary of Results

m balls are thrown at random into n bins:

- Min. one bin with expectation of 2 balls: $m=\sqrt{2 n}$
- No bin expected to be empty: $m=n \ln n$
- Expected number of empty bins: $n e^{-m / n}$

Balls and Bins: Summary of Results

m balls are thrown at random into n bins:

- Min. one bin with expectation of 2 balls: $m=\sqrt{2 n}$
- No bin expected to be empty: $m=n \ln n$
- Expected number of empty bins: $n e^{-m / n}$
- Max. balls in any bin when $m=n$:

$$
\Theta(\ln n / \ln \ln n)
$$

- This is a probabilistic bound: chance of finding any bin with higher occupancy is $1 / n$ or less.
- Note that the absolute maximum is n.

Randomized Quicksort

- Picks a pivot at random. What is its complexity?

Randomized Quicksort

- Picks a pivot at random. What is its complexity?
- If pivot index is picked uniformly at random over the interval $[l, h]$, then:
- every array element is equally likely to be selected as the pivot
- every partition is equally likely
- thus, expected complexity of randomized quicksort is given by:

$$
T(n)=n+\frac{1}{n} \sum_{i=1}^{n-1}(T(i)+T(n-i))
$$

Randomized Quicksort

- Picks a pivot at random. What is its complexity?
- If pivot index is picked uniformly at random over the interval $[l, h]$, then:
- every array element is equally likely to be selected as the pivot
- every partition is equally likely
- thus, expected complexity of randomized quicksort is given by:

$$
T(n)=n+\frac{1}{n} \sum_{i=1}^{n-1}(T(i)+T(n-i))
$$

Summary: Input need not be random

- Expected $O(n \log n)$ performance comes from externally forced randomness in picking the pivot

Cache or Page Eviction

- Caching algorithms have to evict entries when there is a miss
- As do virtual memory systems on a page fault

Cache or Page Eviction

- Caching algorithms have to evict entries when there is a miss
- As do virtual memory systems on a page fault
- Optimally, we should evict the "farthest in future" entry
- But we can't predict the future!

Cache or Page Eviction

- Caching algorithms have to evict entries when there is a miss
- As do virtual memory systems on a page fault
- Optimally, we should evict the "farthest in future" entry
- But we can't predict the future!
- Result: many candidates for eviction. How can be avoid making bad (worst-case) choices repeatedly, even if input behaves badly?

Cache or Page Eviction

- Caching algorithms have to evict entries when there is a miss
- As do virtual memory systems on a page fault
- Optimally, we should evict the "farthest in future" entry
- But we can't predict the future!
- Result: many candidates for eviction. How can be avoid making bad (worst-case) choices repeatedly, even if input behaves badly?
- Approach: pick one of the candidates at random!

Hash Tables

- A data structure for implementing:

Dictionaries: Fast look up of a record based on a key.
Sets: Fast membership check.

Hash Tables

- A data structure for implementing:

Dictionaries: Fast look up of a record based on a key.
Sets: Fast membership check.

- Support expected $O(1)$ time lookup, insert, and delete

Hash Tables

- A data structure for implementing:

Dictionaries: Fast look up of a record based on a key.
Sets: Fast membership check.

- Support expected $O(1)$ time lookup, insert, and delete
- Hash table entries may be:
fat: store a pair (key, object)
lean: store pointer to object containing key

Hash Tables

- A data structure for implementing:

Dictionaries: Fast look up of a record based on a key.
Sets: Fast membership check.

- Support expected $O(1)$ time lookup, insert, and delete
- Hash table entries may be:
fat: store a pair (key, object)
lean: store pointer to object containing key
- Two main questions:
- How to avoid $O(n)$ worst case behavior?
- How to ensure average case performance can be realized for arbitrary distribution of keys?

Hash Table Implementation

Direct access: A fancy name for arrays. Not applicable in most cases where the universe \mathcal{U} of keys is very large.

Hash Table Implementation

Direct access: A fancy name for arrays. Not applicable in most cases where the universe \mathcal{U} of keys is very large.

Index based on hash: Given a hash function h (fixed for the entire table) and a key x, use $h(x)$ to index into an array A.

Hash Table Implementation

Direct access: A fancy name for arrays. Not applicable in most cases where the universe \mathcal{U} of keys is very large.

Index based on hash: Given a hash function h (fixed for the entire table) and a key x, use $h(x)$ to index into an array A.

- Use $A[h(x) \bmod s]$, where s is the size of array
- Sometimes, we fold the mod operation into h.

Hash Table Implementation

Direct access: A fancy name for arrays. Not applicable in most cases where the universe \mathcal{U} of keys is very large.

Index based on hash: Given a hash function h (fixed for the entire table) and a key x, use $h(x)$ to index into an array A.

- Use $A[h(x) \bmod s]$, where s is the size of array
- Sometimes, we fold the mod operation into h.
- Array elements typically called buckets

Hash Table Implementation

Direct access: A fancy name for arrays. Not applicable in most cases where the universe \mathcal{U} of keys is very large.

Index based on hash: Given a hash function h (fixed for the entire table) and a key x, use $h(x)$ to index into an array A.

- Use $A[h(x) \bmod s]$, where s is the size of array
- Sometimes, we fold the mod operation into h.
- Array elements typically called buckets
- Collisions bound to occur since $s \ll|\mathcal{U}|$
- Either $h(x)=h(y)$, or
- $h(x) \neq h(y)$ but $h(x) \equiv h(y)(\bmod s)$

Collisions in Hash tables

- Load factor α : Ratio of number of keys to number of buckets

Collisions in Hash tables

- Load factor α : Ratio of number of keys to number of buckets
- If keys were random:
- What is the $\max \alpha$ if we want ≤ 1 collisions in the table?
- If $\alpha=1$, what is the maximum number of collisions to expect?

Collisions in Hash tables

- Load factor α : Ratio of number of keys to number of buckets
- If keys were random:
- What is the $\max \alpha$ if we want ≤ 1 collisions in the table?
- If $\alpha=1$, what is the maximum number of collisions to expect?
- Both questions can be answered from balls-and-bins results: $1 / \sqrt{n}$, and $O(\ln n / \ln \ln n)$
- Real world keys are not random. Your hash table implementation needs to achieve its performance goals independent of this distribution.

Chained Hash Table

- Each bucket is a linked list.
- Any key that hashes to a bucket is inserted into that bucket.
- What is the average search time, as a function of α ?

Chained Hash Table

- Each bucket is a linked list.
- Any key that hashes to a bucket is inserted into that bucket.
- What is the average search time, as a function of α ?
- It is $1+\alpha$ if:
- you assume that the distribution of lookups is independent of the table entries, OR,
- the chains are not too long (i.e., α is small)

Open addressing

- If there is a collision, probe other empty slots

Linear probing: If $h(x)$ is occupied, try $h(x)+i$ for $i=1,2, \ldots$
Binary probing: Try $h(x) \oplus i$, where \oplus stands for exor.
Quadratic probing: For ith probe, use $h(x)+c_{1} i+c_{2} i^{2}$

Open addressing

- If there is a collision, probe other empty slots Linear probing: If $h(x)$ is occupied, try $h(x)+i$ for $i=1,2, \ldots$ Binary probing: Try $h(x) \oplus i$, where \oplus stands for exor. Quadratic probing: For ith probe, use $h(x)+c_{1} i+c_{2} i^{2}$
- Criteria for secondary probes

Completeness: Should cycle through all possible slots in table Clustering: Probe sequences shouldn't coalesce to long chains Locality: Preserve locality; typically conflicts with clustering.

Open addressing

- If there is a collision, probe other empty slots Linear probing: If $h(x)$ is occupied, try $h(x)+i$ for $i=1,2, \ldots$ Binary probing: Try $h(x) \oplus i$, where \oplus stands for exor.
Quadratic probing: For i th probe, use $h(x)+c_{1} i+c_{2} i^{2}$
- Criteria for secondary probes

Completeness: Should cycle through all possible slots in table Clustering: Probe sequences shouldn't coalesce to long chains
Locality: Preserve locality; typically conflicts with clustering.

- Average search time can be $O\left(1 /(1-\alpha)^{2}\right)$ for linear probing, and $O(1 /(1-\alpha))$ for quadratic probing.

Chaining Vs Open Addressing

- Chaining leads to fewer collisions
- Clustering causes more collisions w/ open addressing for same α
- However, for lean tables, open addressing uses half the space of chaining, so you can use a much lower α for same space usage.

Chaining Vs Open Addressing

- Chaining leads to fewer collisions
- Clustering causes more collisions w/ open addressing for same α
- However, for lean tables, open addressing uses half the space of chaining, so you can use a much lower α for same space usage.
- Chaining is more tolerant of "lumpy" hash functions
- For instance, if $h(x)$ and $h(x+1)$ are often very close, open hashing can experience longer chains when inputs are closely spaced.
- Hash functions for open-hashing having to be selected very carefully

Chaining Vs Open Addressing

- Chaining leads to fewer collisions
- Clustering causes more collisions w/ open addressing for same α
- However, for lean tables, open addressing uses half the space of chaining, so you can use a much lower α for same space usage.
- Chaining is more tolerant of "lumpy" hash functions
- For instance, if $h(x)$ and $h(x+1)$ are often very close, open hashing can experience longer chains when inputs are closely spaced.
- Hash functions for open-hashing having to be selected very carefully
- Linked lists are not cache-friendly
- Can be mitigated w/ arrays for buckets instead of linked lists

Chaining Vs Open Addressing

- Chaining leads to fewer collisions
- Clustering causes more collisions w/ open addressing for same α
- However, for lean tables, open addressing uses half the space of chaining, so you can use a much lower α for same space usage.
- Chaining is more tolerant of "lumpy" hash functions
- For instance, if $h(x)$ and $h(x+1)$ are often very close, open hashing can experience longer chains when inputs are closely spaced.
- Hash functions for open-hashing having to be selected very carefully
- Linked lists are not cache-friendly
- Can be mitigated w/ arrays for buckets instead of linked lists
- Not all quadratic probes cover all slots (but some can)

Resizing

- Hard to predict the right size for hash table in advance
- Ideally, $0.5 \leq \alpha \leq 1$, so we need an accurate estimate

Resizing

- Hard to predict the right size for hash table in advance
- Ideally, $0.5 \leq \alpha \leq 1$, so we need an accurate estimate
- It is stupid to ask programmers to guess the size
- Without a good basis, only terrible guesses are possible

Resizing

- Hard to predict the right size for hash table in advance
- Ideally, $0.5 \leq \alpha \leq 1$, so we need an accurate estimate
- It is stupid to ask programmers to guess the size
- Without a good basis, only terrible guesses are possible
- Right solution: Resize tables automatically.
- When α becomes too large (or small), rehash into a bigger (or smaller) table

Resizing

- Hard to predict the right size for hash table in advance
- Ideally, $0.5 \leq \alpha \leq 1$, so we need an accurate estimate
- It is stupid to ask programmers to guess the size
- Without a good basis, only terrible guesses are possible
- Right solution: Resize tables automatically.
- When α becomes too large (or small), rehash into a bigger (or smaller) table
- Rehashing is $O(n)$, but if you increase size by a factor, then amortized cost is still $O(1)$

Resizing

- Hard to predict the right size for hash table in advance
- Ideally, $0.5 \leq \alpha \leq 1$, so we need an accurate estimate
- It is stupid to ask programmers to guess the size
- Without a good basis, only terrible guesses are possible
- Right solution: Resize tables automatically.
- When α becomes too large (or small), rehash into a bigger (or smaller) table
- Rehashing is $O(n)$, but if you increase size by a factor, then amortized cost is still $O(1)$
- Exercise: How to ensure amortized $O(1)$ cost when you resize up as well as down?

Average Vs Worst Case

- Worst case search time is $O(n)$ for a table of size n

Average Vs Worst Case

- Worst case search time is $O(n)$ for a table of size n
- With hash tables, it is all about avoiding the worst case, and achieving the average case

Average Vs Worst Case

- Worst case search time is $O(n)$ for a table of size n
- With hash tables, it is all about avoiding the worst case, and achieving the average case
- Two main chalenges:
- Input is not random, e.g., names or IP addresses.
- Even when input is random, h may cause "lumping," or non-uniform dispersal of \mathcal{U} to the set $\{1, \ldots, n\}$

Average Vs Worst Case

- Worst case search time is $O(n)$ for a table of size n
- With hash tables, it is all about avoiding the worst case, and achieving the average case
- Two main chalenges:
- Input is not random, e.g., names or IP addresses.
- Even when input is random, h may cause "lumping," or non-uniform dispersal of \mathcal{U} to the set $\{1, \ldots, n\}$
- Two main techniques

Universal hashing
Perfect hashing

Universal Hashing

- No single hash function can be good on all inputs
- Any function $\mathcal{U} \rightarrow\{1, \ldots, n\}$ must map $|\mathcal{U}| / n$ inputs to same value! Note: $|\mathcal{U}|$ can be much, much larger than n.

Universal Hashing

- No single hash function can be good on all inputs
- Any function $\mathcal{U} \rightarrow\{1, \ldots, n\}$ must map $|\mathcal{U}| / n$ inputs to same value! Note: $|\mathcal{U}|$ can be much, much larger than n.

Definition

A family of hash functions \mathcal{H} is universal if

$$
\operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)]=\frac{1}{n} \quad \text { for all } x \neq y
$$

Universal Hashing

- No single hash function can be good on all inputs
- Any function $\mathcal{U} \rightarrow\{1, \ldots, n\}$ must map $|\mathcal{U}| / n$ inputs to same value!

Note: $|\mathcal{U}|$ can be much, much larger than n.

Definition

A family of hash functions \mathcal{H} is universal if

$$
\operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)]=\frac{1}{n} \quad \text { for all } x \neq y
$$

Meaning: If we pick h at random from the family \mathcal{H}, then, probability of collisions is the same for any two elements.

Contrast with non-universal hash functions such as

$$
h(x)=a x \bmod n, \quad(a \text { is chosen at random })
$$

Note y and $y+k n$ collide with a probability of 1 for every a.

Universal Hashing Using Multiplication

Observation (Multiplication Modulo Prime)
If p is a prime and $0<a<p$

- $\{1 a, 2 a, 3 a, \ldots,(p-1) a\}=\{1,2, \ldots, p-1\}(\bmod p)$
- $\forall a \exists b a b \equiv 1(\bmod p)$

Universal Hashing Using Multiplication

Observation (Multiplication Modulo Prime)
If p is a prime and $0<a<p$

- $\{1 a, 2 a, 3 a, \ldots,(p-1) a\}=\{1,2, \ldots, p-1\}(\bmod p)$
- $\forall a \exists b a b \equiv 1(\bmod p)$

Prime multiplicative hashing

Let the key $x \in \mathcal{U}, p>|\mathcal{U}|$ be prime, and $0<r<p$ be random. Then

$$
h(x)=(r x \bmod p) \bmod n
$$

is universal.
Prove: $\operatorname{Pr}[h(x)=h(y)]=\frac{1}{n}, \quad$ for $x \neq y$

Universality of prime multiplicative hashing

- Need to show $\operatorname{Pr}[h(x)=h(y)]=\frac{1}{n}$, for $x \neq y$
- $h(x)=h(y)$ means $(r x \bmod p) \bmod n=(r y \bmod p) \bmod n$
- Note $a \bmod n=b \bmod n$ means $a=b+k n$ for some integer k. Using this, we eliminate $\bmod n$ from above equation to get:

$$
\begin{aligned}
r x \bmod p & =k n+r y \bmod p, \text { where } k \leq\lfloor p / n\rfloor \\
r x & \equiv k n+r y(\bmod p) \\
r(x-y) & \equiv k n(\bmod p) \\
r & \equiv k n(x-y)^{-1}(\bmod p)
\end{aligned}
$$

- So, x, y collide if $r=n(x-y)^{-1}, 2 n(x-y)^{-1}, \ldots,\lfloor p / n\rfloor n(x-y)^{-1}$
- In other words, x and y collide for p / n out of p possible values of r, i.e., collision probability is $1 / n$

Binary multiplicative hashing

- Faster: avoids need for computing modulo prime

Binary multiplicative hashing

- Faster: avoids need for computing modulo prime
- When $|\mathcal{U}|<2^{w}, n=2^{l}$ and a an odd random number

$$
h(x)=\left\lfloor\frac{a x \bmod 2^{w}}{2^{w-l}}\right\rfloor
$$

Binary multiplicative hashing

- Faster: avoids need for computing modulo prime
- When $|\mathcal{U}|<2^{w}, n=2^{l}$ and a an odd random number

$$
h(x)=\left\lfloor\frac{a x \bmod 2^{w}}{2^{w-l}}\right\rfloor
$$

- Can be implemented efficiently if w is the wordsize:
(a*x) >> (WORDSIZE-HASHBITS)

Binary multiplicative hashing

- Faster: avoids need for computing modulo prime
- When $|\mathcal{U}|<2^{w}, n=2^{l}$ and a an odd random number

$$
h(x)=\left\lfloor\frac{a x \bmod 2^{w}}{2^{w-l}}\right\rfloor
$$

- Can be implemented efficiently if w is the wordsize:

$$
\left(a^{*} \mathrm{x}\right) ~ \gg \text { (WORDSIZE-HASHBITS) }
$$

- Scheme is near-universal: collision probability is $O(1) / 2^{l}$

Prime Multiplicative Hash for Vectors

Let p be a prime number, and the key x be a vector $\left[x_{1}, \ldots, x_{k}\right]$ where $0 \leq x_{i}<p$. Let

$$
h(x)=\sum_{i=1}^{k} r_{i} x_{i}(\bmod p)
$$

If $0<r_{i}<p$ are chosen at random, then h is universal.

Prime Multiplicative Hash for Vectors

Let p be a prime number, and the key x be a vector $\left[x_{1}, \ldots, x_{k}\right]$ where $0 \leq x_{i}<p$. Let

$$
h(x)=\sum_{i=1}^{k} r_{i} x_{i}(\bmod p)
$$

If $0<r_{i}<p$ are chosen at random, then h is universal.

- Strings can also be handled like vectors, or alternatively, as a polynomial evaluated at a random point a, with p a prime:

$$
h(x)=\sum_{i=0}^{l} x_{i} a^{i} \bmod p
$$

Universality of multiplicative hashing for vectors

- Since $x \neq y$, there exists an i such that $x_{i} \neq y_{i}$

Universality of multiplicative hashing for vectors

- Since $x \neq y$, there exists an i such that $x_{i} \neq y_{i}$
- When collision occurs, $\sum_{j=1}^{k} r_{j} x_{j}=\sum_{j=1}^{k} r_{j} y_{j}(\bmod p)$

Universality of multiplicative hashing for vectors

- Since $x \neq y$, there exists an i such that $x_{i} \neq y_{i}$
- When collision occurs, $\sum_{j=1}^{k} r_{j} x_{j}=\sum_{j=1}^{k} r_{j} y_{j}(\bmod p)$
- Rearranging, $\sum_{j \neq i} r_{j}\left(x_{j}-y_{j}\right)=r_{i}\left(y_{i}-x_{i}\right)(\bmod p)$

Universality of multiplicative hashing for vectors

- Since $x \neq y$, there exists an i such that $x_{i} \neq y_{i}$
- When collision occurs, $\sum_{j=1}^{k} r_{j} x_{j}=\sum_{j=1}^{k} r_{j} y_{j}(\bmod p)$
- Rearranging, $\sum_{j \neq i} r_{j}\left(x_{j}-y_{j}\right)=r_{i}\left(y_{i}-x_{i}\right)(\bmod p)$
- The Ihs evaluates to some c, and we need to estimate the probability that rhs evaluates to this c

Universality of multiplicative hashing for vectors

- Since $x \neq y$, there exists an i such that $x_{i} \neq y_{i}$
- When collision occurs, $\sum_{j=1}^{k} r_{j} x_{j}=\sum_{j=1}^{k} r_{j} y_{j}(\bmod p)$
- Rearranging, $\sum_{j \neq i} r_{j}\left(x_{j}-y_{j}\right)=r_{i}\left(y_{i}-x_{i}\right)(\bmod p)$
- The Ihs evaluates to some c, and we need to estimate the probability that rhs evaluates to this c
- Using multiplicative inverse property, we see that $r_{i}=c\left(y_{i}-x_{i}\right)^{-1}(\bmod p)$.

Universality of multiplicative hashing for vectors

- Since $x \neq y$, there exists an i such that $x_{i} \neq y_{i}$
- When collision occurs, $\sum_{j=1}^{k} r_{j} x_{j}=\sum_{j=1}^{k} r_{j} y_{j}(\bmod p)$
- Rearranging, $\sum_{j \neq i} r_{j}\left(x_{j}-y_{j}\right)=r_{i}\left(y_{i}-x_{i}\right)(\bmod p)$
- The lhs evaluates to some c, and we need to estimate the probability that rhs evaluates to this c
- Using multiplicative inverse property, we see that $r_{i}=c\left(y_{i}-x_{i}\right)^{-1}(\bmod p)$.
- Since $y_{i}, x_{i}<p$, it is easy to see from this equation that the collision-causing value of r_{i} is distinct for distinct y_{i}.

Universality of multiplicative hashing for vectors

- Since $x \neq y$, there exists an i such that $x_{i} \neq y_{i}$
- When collision occurs, $\sum_{j=1}^{k} r_{j} x_{j}=\sum_{j=1}^{k} r_{j} y_{j}(\bmod p)$
- Rearranging, $\sum_{j \neq i} r_{j}\left(x_{j}-y_{j}\right)=r_{i}\left(y_{i}-x_{i}\right)(\bmod p)$
- The Ihs evaluates to some c, and we need to estimate the probability that rhs evaluates to this c
- Using multiplicative inverse property, we see that $r_{i}=c\left(y_{i}-x_{i}\right)^{-1}(\bmod p)$.
- Since $y_{i}, x_{i}<p$, it is easy to see from this equation that the collision-causing value of r_{i} is distinct for distinct y_{i}.
- Viewed another way, exactly one of p choices of r_{i} would cause a collision between x_{i} and y_{i}, i.e., $\operatorname{Pr}_{h}[h(x)=h(y)]=1 / p$

Perfect hashing

Static: Pick a hash function (or set of functions) that avoids collisions for a given set of keys

Perfect hashing

Static: Pick a hash function (or set of functions) that avoids collisions for a given set of keys

Dynamic: Keys need not be static.
Approach 1: Use $O\left(n^{2}\right)$ storage. Expected collision on n items is 0 . But too wasteful of storage.
Don't forget: more memory usually means less performance due to cache effects.

Perfect hashing

Static: Pick a hash function (or set of functions) that avoids collisions for a given set of keys

Dynamic: Keys need not be static.
Approach 1: Use $O\left(n^{2}\right)$ storage. Expected collision on n items is 0 . But too wasteful of storage.
Don't forget: more memory usually means less performance due to cache effects.
Approach 2: Use a secondary hash table for each bucket of size n_{i}^{2}, where n_{i} is the number of elements in the bucket.
Uses only $O(n)$ storage, if h is universal

Hashing Summary

- Excellent average case performance
- Pointer chasing is expensive on modern hardware, so improvement from $O(\log n)$ of binary trees to expected $O(1)$ for hash tables is significant.

Hashing Summary

- Excellent average case performance
- Pointer chasing is expensive on modern hardware, so improvement from $O(\log n)$ of binary trees to expected $O(1)$ for hash tables is significant.
- But all benefits will be reversed if collisions occur too often
- Universal hashing is a way to ensure expected average case even when input is not random.
- Perfect hashing can provide efficient performance even in the worst case, but the benefits are likely small in practice.

Finding closest pair of points

Problem: Given a set of n points in a d-dimensional space, identify the two that have the smallest Euclidean distance between them.

Applications: A central problem in graphics, vision, air-traffic control, navigation, molecular modeling, and so on.

[^2]
Randomized Closest Pair: Key Ideas

- Divide the plane into small squares, hash points into them
- Pairwise comparisons can be limited to points within the squares very closeby

Randomized Closest Pair: Key Ideas

- Divide the plane into small squares, hash points into them
- Pairwise comparisons can be limited to points within the squares very closeby
- Process the points in some random order
- Maintain min. distance δ among points processed so far.
- Update δ as more points are processed

Randomized Closest Pair: Key Ideas

- Divide the plane into small squares, hash points into them
- Pairwise comparisons can be limited to points within the squares very closeby
- Process the points in some random order
- Maintain min. distance δ among points processed so far.
- Update δ as more points are processed
- At any point, the "small squares" have a size of $\delta / 2$
- At most one point per square (or else points are closer than δ)
- Points closer than δ will at most be two squares from each other
- Only constant number of points to consider
- Requires rehashing all processed points when δ is updated.

Randomized Closest Pair: Analysis

- Correctness is relatively clear, so we focus on performance
- Two main concerns

Randomized Closest Pair: Analysis

- Correctness is relatively clear, so we focus on performance
- Two main concerns

Storage: \# of squares is $1 / \delta^{2}$, which can be very large

Randomized Closest Pair: Analysis

- Correctness is relatively clear, so we focus on performance
- Two main concerns

Storage: \# of squares is $1 / \delta^{2}$, which can be very large

- Use a dictionary (hash table) that stores up to n points, and maps $\left(2 x_{i} / \delta, 2 y_{i} / \delta\right)$ to $\{1, \ldots, n\}$

Randomized Closest Pair: Analysis

- Correctness is relatively clear, so we focus on performance
- Two main concerns

Storage: \# of squares is $1 / \delta^{2}$, which can be very large

- Use a dictionary (hash table) that stores up to n points, and maps $\left(2 x_{i} / \delta, 2 y_{i} / \delta\right)$ to $\{1, \ldots, n\}$
- To process a point $\left(x_{j}, y_{j}\right)$
- look up the dictionary at $\left(x_{j} / \delta \pm 2, y_{j} / \delta \pm 2\right)$
- insert if it is not closer than δ

Randomized Closest Pair: Analysis

- Correctness is relatively clear, so we focus on performance
- Two main concerns

Storage: \# of squares is $1 / \delta^{2}$, which can be very large

- Use a dictionary (hash table) that stores up to n points, and maps $\left(2 x_{i} / \delta, 2 y_{i} / \delta\right)$ to $\{1, \ldots, n\}$
- To process a point $\left(x_{j}, y_{j}\right)$
- look up the dictionary at $\left(x_{j} / \delta \pm 2, y_{j} / \delta \pm 2\right)$
- insert if it is not closer than δ

Rehashing points: If closer than δ - very expensive.

Randomized Closest Pair: Analysis

- Correctness is relatively clear, so we focus on performance
- Two main concerns

Storage: \# of squares is $1 / \delta^{2}$, which can be very large

- Use a dictionary (hash table) that stores up to n points, and maps $\left(2 x_{i} / \delta, 2 y_{i} / \delta\right)$ to $\{1, \ldots, n\}$
- To process a point $\left(x_{j}, y_{j}\right)$
- look up the dictionary at $\left(x_{j} / \delta \pm 2, y_{j} / \delta \pm 2\right)$
- insert if it is not closer than δ

Rehashing points: If closer than δ - very expensive.

- Total runtime can all be "charged" to insert operations,
- incl. those performed during rehashing
so we will focus on estimating inserts.

Randomized Closest Pair: \# of Inserts

Theorem

If random variable X_{i} denotes the likelihood of needing to rehash after processing k points, then

$$
X_{i} \leq \frac{2}{i}
$$

Randomized Closest Pair: \# of Inserts

Theorem

If random variable X_{i} denotes the likelihood of needing to rehash after processing k points, then

$$
X_{i} \leq \frac{2}{i}
$$

- Let $p_{1}, p_{2}, \ldots, p_{i}$ be the points processed so far, and p and q be the closest among these

Randomized Closest Pair: \# of Inserts

Theorem

If random variable X_{i} denotes the likelihood of needing to rehash after processing k points, then

$$
X_{i} \leq \frac{2}{i}
$$

- Let $p_{1}, p_{2}, \ldots, p_{i}$ be the points processed so far, and p and q be the closest among these
- Rehashing is needed while processing p_{i} if $p_{i}=p$ or $p_{i}=q$

Randomized Closest Pair: \# of Inserts

Theorem

If random variable X_{i} denotes the likelihood of needing to rehash after processing k points, then

$$
X_{i} \leq \frac{2}{i}
$$

- Let $p_{1}, p_{2}, \ldots, p_{i}$ be the points processed so far, and p and q be the closest among these
- Rehashing is needed while processing p_{i} if $p_{i}=p$ or $p_{i}=q$
- Since points are processed in random order, there is a $2 / i$ probability that p_{i} is one of p or q

Randomized Closest Pair: \# of Inserts

Theorem

The expected number of inserts is $3 n$.

Randomized Closest Pair: \# of Inserts

Theorem

The expected number of inserts is $3 n$.

- Processing of p_{i} involves
- i inserts if rehashing takes place, and 1 insert otherwise

Randomized Closest Pair: \# of Inserts

Theorem

The expected number of inserts is $3 n$.

- Processing of p_{i} involves
- i inserts if rehashing takes place, and 1 insert otherwise
- So, expected inserts for processing p_{i} is

$$
i \cdot X_{i}+1 \cdot\left(1-X_{i}\right)=1+(i-1) \cdot X_{i}=1+\frac{2(i-1)}{i} \leq 3
$$

Randomized Closest Pair: \# of Inserts

Theorem

The expected number of inserts is $3 n$.

- Processing of p_{i} involves
- i inserts if rehashing takes place, and 1 insert otherwise
- So, expected inserts for processing p_{i} is

$$
i \cdot X_{i}+1 \cdot\left(1-X_{i}\right)=1+(i-1) \cdot X_{i}=1+\frac{2(i-1)}{i} \leq 3
$$

- Upper bound on expected inserts is thus $3 n$

Randomized Closest Pair: \# of Inserts

Theorem

The expected number of inserts is $3 n$.

- Processing of p_{i} involves
- i inserts if rehashing takes place, and 1 insert otherwise
- So, expected inserts for processing p_{i} is

$$
i \cdot X_{i}+1 \cdot\left(1-X_{i}\right)=1+(i-1) \cdot X_{i}=1+\frac{2(i-1)}{i} \leq 3
$$

- Upper bound on expected inserts is thus $3 n$

Look Ma! I have a linear-time randomized closest pair algorithm-And it is not even probabilistic!

Probabilistic Algorithms

- Algorithms that produce the correct answer with some probability
- By re-running the algorithm many times, we can increase the probability to be arbitrarily close to 1.0 .

Bloom Filters

- To resolve collisions, hash tables have to store keys: $O(m w)$ bits, where w is the number of bits in the key

Bloom Filters

- To resolve collisions, hash tables have to store keys: $O(m w)$ bits, where w is the number of bits in the key
- What if you want to store very large keys?

Bloom Filters

- To resolve collisions, hash tables have to store keys: $O(m w)$ bits, where w is the number of bits in the key
- What if you want to store very large keys?
- Radical idea: Don't store the key in the table!
- Potentially w-fold space reduction

Bloom Filters

- To reduce collisions, use multiple hash functions h_{1}, \ldots, h_{k}

Bloom Filters

- To reduce collisions, use multiple hash functions h_{1}, \ldots, h_{k}
- Hash table is simply a bitvector $B[1 . . m]$

Bloom Filters

- To reduce collisions, use multiple hash functions h_{1}, \ldots, h_{k}
- Hash table is simply a bitvector $B[1 . . m]$
- To insert key x, set $B\left[h_{1}(x)\right], B\left[h_{2}(x)\right], \ldots, B\left[h_{k}(x)\right]$

Images from Wikipedia Commons

Bloom Filters

- To reduce collisions, use multiple hash functions h_{1}, \ldots, h_{k}
- Hash table is simply a bitvector $B[1 . . m]$
- To insert key x, set $B\left[h_{1}(x)\right], B\left[h_{2}(x)\right], \ldots, B\left[h_{k}(x)\right]$

Images from Wikipedia Commons

- Membership check for y : all $B\left[h_{i}(y)\right]$ should be set
- No false negatives, but false positives possible

Bloom Filters

- To reduce collisions, use multiple hash functions h_{1}, \ldots, h_{k}
- Hash table is simply a bitvector $B[1 . . m]$
- To insert key x, set $B\left[h_{1}(x)\right], B\left[h_{2}(x)\right], \ldots, B\left[h_{k}(x)\right]$

Images from Wikipedia Commons

- Membership check for y : all $B\left[h_{i}(y)\right]$ should be set
- No false negatives, but false positives possible
- No deletions possible in the current algorithm.

Bloom Filters: False positives

- Prob. that a bit is not set by h_{1} on inserting a key is $(1-1 / m)$

Bloom Filters: False positives

- Prob. that a bit is not set by h_{1} on inserting a key is $(1-1 / m)$
- The probability it is not set by any h_{i} is $(1-1 / m)^{k}$

Bloom Filters: False positives

- Prob. that a bit is not set by h_{1} on inserting a key is $(1-1 / m)$
- The probability it is not set by any h_{i} is $(1-1 / m)^{k}$
- The probability it is not set after r key inserts is $(1-1 / m)^{k r} \approx e^{-k r / m}$

Bloom Filters: False positives

- Prob. that a bit is not set by h_{1} on inserting a key is $(1-1 / m)$
- The probability it is not set by any h_{i} is $(1-1 / m)^{k}$
- The probability it is not set after r key inserts is $(1-1 / m)^{k r} \approx e^{-k r / m}$
- Complementing, the prob. p that a certain bit is set is $1-e^{-k r / m}$

Bloom Filters: False positives

- Prob. that a bit is not set by h_{1} on inserting a key is $(1-1 / m)$
- The probability it is not set by any h_{i} is $(1-1 / m)^{k}$
- The probability it is not set after r key inserts is $(1-1 / m)^{k r} \approx e^{-k r / m}$
- Complementing, the prob. p that a certain bit is set is $1-e^{-k r / m}$
- For a false positive on a key y, all the bits that it hashes to should be a 1 . This happens with probability

$$
\left(1-e^{-k r / m}\right)^{k}=(1-p)^{k}
$$

Bloom Filters

- Note: $n=m / r$ is the storage (in bits) used per key.
- So, we can rewrite the FP equation as:

$$
\left(1-e^{-k r / m}\right)^{k}=\left(1-e^{-k / n}\right)^{k}
$$

Bloom Filters

- Note: $n=m / r$ is the storage (in bits) used per key.
- So, we can rewrite the FP equation as:

$$
\left(1-e^{-k r / m}\right)^{k}=\left(1-e^{-k / n}\right)^{k}
$$

- Optimal value of k can be shown to be $n \ln 2$.
- The FP rate simplifies to $0.5^{n \ln 2}=0.619^{n}$
- A Bloom filter that uses just 8 bits per key to store an arbitrary sized key will have an FP rate of 2%

Bloom Filters

- Note: $n=m / r$ is the storage (in bits) used per key.
- So, we can rewrite the FP equation as:

$$
\left(1-e^{-k r / m}\right)^{k}=\left(1-e^{-k / n}\right)^{k}
$$

- Optimal value of k can be shown to be $n \ln 2$.
- The FP rate simplifies to $0.5^{\ln 2}=0.619^{n}$
- A Bloom filter that uses just 8 bits per key to store an arbitrary sized key will have an FP rate of 2%
- Important: Bloom filters can be used as a prefilter, e.g., if actual keys are in secondary storage (e.g., files or internet repositories)

Using arithmetic for substring matching

Problem: Given strings T [1..n] and $P[1 . . m]$, find occurrences of P in T in $O(n+m)$ time.

Idea: To simplify presentation, assume P, T range over [0-9]

- Interpret $P[1 . . m]$ as digits of a number

$$
p=10^{m-1} P[1]+10^{m-2} P[2]+\cdots 10^{m-m} P[m]
$$

- Similarly, interpret $T[i . .(i+m-1)]$ as the number t_{i}
- Note: P is a substring of T at i iff $p=t_{i}$
- To get t_{i+1}, shift $T[i]$ out of t_{i}, and shift in $T[i+m]$:

$$
t_{i+1}=\left(t_{i}-10^{m-1} T[i]\right) \cdot 10+T[i+m]
$$

We have an $O(n+m)$ algorithm. Almost: we still need to figure out how to operate on m-digit numbers in constant time!

Rabin-Karp Fingerprinting

Key Idea

- Instead of working with m-digit numbers,
- perform all arithmetic modulo a random prime number q,
- where $q>m^{2}$ fits within wordsize
- All observations made on previous slide still hold
- Except that $p=t_{i}$ does not guarantee a match
- Typically, we expect matches to be infrequent, so we can use $O(m)$ exact-matching algorithm to confirm probable matches.

Carter-Wegman-Rabin-Karp Algorithm

Difficulty with Rabin-Karp: Need to generate random primes, which is not an efficient task.
New Idea: Make the radix random, as opposed to the modulus

- We still compute modulo a prime q, but it is not random.

Alternative interpretation: We treat P as a polynomial

$$
p(x)=\sum_{i=1}^{m} P[m-i] \cdot x^{i}
$$

and evaluate this polynomial at a randomly chosen value of x
Like any probabilistic algorithm we can increase correctness probability by repeating the algorithm with different randoms.

- Different prime numbers for Rabin-Karp
- Different values of x for CWRK

Carter-Wegman-Rabin-Karp Algorithm

$$
p(x)=\sum_{i=1}^{m} P[m-i] \cdot x^{i}
$$

Random choice does not imply high probability of being right.

- You need to explicitly establish correctness probability.

Carter-Wegman-Rabin-Karp Algorithm

$$
p(x)=\sum_{i=1}^{m} P[m-i] \cdot x^{i}
$$

Random choice does not imply high probability of being right.

- You need to explicitly establish correctness probability.

So, what is the likelihood of false matches?

- A false match occurs if $p_{1}(x)=p_{2}(x)$, i.e., $p_{1}(x)-p_{2}(x)=p_{3}(x)=0$.

Carter-Wegman-Rabin-Karp Algorithm

$$
p(x)=\sum_{i=1}^{m} P[m-i] \cdot x^{i}
$$

Random choice does not imply high probability of being right.

- You need to explicitly establish correctness probability.

So, what is the likelihood of false matches?

- A false match occurs if $p_{1}(x)=p_{2}(x)$, i.e., $p_{1}(x)-p_{2}(x)=p_{3}(x)=0$.
- Arithmetic modulo prime defines a field, so an m th degree polynomial has $m+1$ roots.

Carter-Wegman-Rabin-Karp Algorithm

$$
p(x)=\sum_{i=1}^{m} P[m-i] \cdot x^{i}
$$

Random choice does not imply high probability of being right.

- You need to explicitly establish correctness probability.

So, what is the likelihood of false matches?

- A false match occurs if $p_{1}(x)=p_{2}(x)$, i.e., $p_{1}(x)-p_{2}(x)=p_{3}(x)=0$.
- Arithmetic modulo prime defines a field, so an m th degree polynomial has $m+1$ roots.
- Thus, $(m+1) / q$ of the q (recall q is the prime number used for performing modulo arithmetic) possible choices of x will result in a false match, i.e., probability of false positive $=(m+1) / q$

Primality Testing

Fermat's Theorem
 $a^{p-1} \equiv 1(\bmod p)$

Primality Testing

Fermat's Theorem

```
a
```

- Recall $\{1 a, 2 a, 3 a, \ldots,(p-1) a\} \equiv\{1,2, \ldots, p-1\}(\bmod p)$

Primality Testing

Fermat's Theorem

```
a
```

- Recall $\{1 a, 2 a, 3 a, \ldots,(p-1) a\} \equiv\{1,2, \ldots, p-1\}(\bmod p)$
- Multiply all elements of both sides:

$$
(p-1)!a^{p-1} \equiv(p-1)!(\bmod p)
$$

Primality Testing

Fermat's Theorem

```
a
```

- Recall $\{1 a, 2 a, 3 a, \ldots,(p-1) a\} \equiv\{1,2, \ldots, p-1\}(\bmod p)$
- Multiply all elements of both sides:

$$
(p-1)!a^{p-1} \equiv(p-1)!(\bmod p)
$$

- Canceling out $(p-1)$! from both sides, we have the theorem!

Primality Testing

- Given a number N, we can use Fermat's theorem as a probabilistic test to see if it is prime:
- if $a^{N-1} \not \equiv 1(\bmod N)$ then N is not prime
- Repeat with different values of a to gain more confidence

Primality Testing

- Given a number N, we can use Fermat's theorem as a probabilistic test to see if it is prime:
- if $a^{N-1} \not \equiv 1(\bmod N)$ then N is not prime
- Repeat with different values of a to gain more confidence
- Question: If N is not prime, what is the probability that the above procedure will fail?

Primality Testing

- Given a number N, we can use Fermat's theorem as a probabilistic test to see if it is prime:
- if $a^{N-1} \not \equiv 1(\bmod N)$ then N is not prime
- Repeat with different values of a to gain more confidence
- Question: If N is not prime, what is the probability that the above procedure will fail?
- For Carmichael's numbers, the probability is 1 - but ignore this for now, since these numbers are very rare.

Primality Testing

- Given a number N, we can use Fermat's theorem as a probabilistic test to see if it is prime:
- if $a^{N-1} \not \equiv 1(\bmod N)$ then N is not prime
- Repeat with different values of a to gain more confidence
- Question: If N is not prime, what is the probability that the above procedure will fail?
- For Carmichael's numbers, the probability is 1 - but ignore this for now, since these numbers are very rare.
- For other numbers, we can show that the above procedure works with probability 0.5

Primality Testing

Lemma

If $a^{N-1} \not \equiv 1(\bmod N)$ for a relatively prime to N, then it holds for at least half the choices of $a<N$.

Primality Testing

Lemma

If $a^{N-1} \not \equiv 1(\bmod N)$ for a relatively prime to N, then it holds for at least half the choices of $a<N$.

- If there is no b such that $b^{N-1} \equiv 1(\bmod N)$, then we have nothing to prove.

Primality Testing

Lemma

If $a^{N-1} \not \equiv 1(\bmod N)$ for a relatively prime to N, then it holds for at least half the choices of $a<N$.

- If there is no b such that $b^{N-1} \equiv 1(\bmod N)$, then we have nothing to prove.
- Otherwise, pick one such b, and consider $c \equiv a b$.

Primality Testing

Lemma

If $a^{N-1} \not \equiv 1(\bmod N)$ for a relatively prime to N, then it holds for at least half the choices of $a<N$.

- If there is no b such that $b^{N-1} \equiv 1(\bmod N)$, then we have nothing to prove.
- Otherwise, pick one such b, and consider $c \equiv a b$.
- Note $c^{N-1} \equiv a^{N-1} b^{N-1} \equiv a^{N-1} \not \equiv 1$

Primality Testing

Lemma

If $a^{N-1} \not \equiv 1(\bmod N)$ for a relatively prime to N, then it holds for at least half the choices of $a<N$.

- If there is no b such that $b^{N-1} \equiv 1(\bmod N)$, then we have nothing to prove.
- Otherwise, pick one such b, and consider $c \equiv a b$.
- Note $c^{N-1} \equiv a^{N-1} b^{N-1} \equiv a^{N-1} \not \equiv 1$
- Thus, for every b for which Fermat's test is satisfied, there exists a c that does not satisfy it.
- Moreover, since a is relatively prime to $N, a b \not \equiv a b^{\prime}$ unless $b \equiv b^{\prime}$.

Primality Testing

Lemma

If $a^{N-1} \not \equiv 1(\bmod N)$ for a relatively prime to N, then it holds for at least half the choices of $a<N$.

- If there is no b such that $b^{N-1} \equiv 1(\bmod N)$, then we have nothing to prove.
- Otherwise, pick one such b, and consider $c \equiv a b$.
- Note $c^{N-1} \equiv a^{N-1} b^{N-1} \equiv a^{N-1} \not \equiv 1$
- Thus, for every b for which Fermat's test is satisfied, there exists a c that does not satisfy it.
- Moreover, since a is relatively prime to $N, a b \not \equiv a b^{\prime}$ unless $b \equiv b^{\prime}$.
- Thus, at least half of the numbers $x<N$ relatively prime to N will fail the test.

Primality Testing

- When Fermat's test returns "prime" $\operatorname{Pr}[\mathrm{N}$ is not prime $]<0.5$
- If Fermat's test is repeated for k choices of a, and returns "prime" in each case, $\operatorname{Pr}[N$ is not prime $]<0.5^{k}$
- In fact, 0.5 is an upper bound. Empirically, the probability has been much smaller.

Primality Testing

- Empirically, on numbers less than 25 billion, the probability of Fermat's test failing to detect non-primes (with $a=2$) is more like 0.00002
- This probability decreases even more for larger numbers.

Prime number generation

Lagrange's Prime Number Theorem

For large N, primes occur approx. once every $\log N$ numbers.

Prime number generation

Lagrange's Prime Number Theorem
For large N, primes occur approx. once every $\log N$ numbers.

Generating Primes

- Generate a random number
- Probabilistically test it is prime, and if so output it
- Otherwise, repeat the whole process

Prime number generation

Lagrange's Prime Number Theorem
For large N, primes occur approx. once every $\log N$ numbers.

Generating Primes

- Generate a random number
- Probabilistically test it is prime, and if so output it
- Otherwise, repeat the whole process
- What is the complexity of this procedure?

Prime number generation

Lagrange's Prime Number Theorem

For large N, primes occur approx. once every $\log N$ numbers.

Generating Primes

- Generate a random number
- Probabilistically test it is prime, and if so output it
- Otherwise, repeat the whole process
- What is the complexity of this procedure?
- $O\left(\log ^{2} N\right)$ multiplications on $\log N$ bit numbers
- If N is not prime, should we try $N+1, N+2, \ldots$ instead of generating a new random number?

Prime number generation

Lagrange's Prime Number Theorem

For large N, primes occur approx. once every $\log N$ numbers.

Generating Primes

- Generate a random number
- Probabilistically test it is prime, and if so output it
- Otherwise, repeat the whole process
- What is the complexity of this procedure?
- $O\left(\log ^{2} N\right)$ multiplications on $\log N$ bit numbers
- If N is not prime, should we try $N+1, N+2, \ldots$ instead of generating a new random number?
- No, it is not easy to decide when to give up.

Rabin-Miller Test

- Works on Carmichael's numbers
- For prime number test, we consider only odd N, so $N-1=2^{t} u$ for some odd u
- Compute

$$
a^{u}, a^{2 u}, a^{4 u}, \ldots, a^{2^{t} u}=a^{N-1}
$$

- If a^{N-1} is not 1 then we know N is composite.
- Otherwise, we do a follow-up test on $a^{u}, a^{2 u}$ etc.
- Let $a^{2^{r} u}$ be the first term that is equivalent to 1 .
- If $r>0$ and $a^{2^{r-1} u} \not \equiv-1$ then N is composite
- This combined test detects non-primes with a probability of at least 0.75 for all numbers.

[^0]: ${ }^{1}$ This is actually an upper bound, as there can be some double counting.

[^1]: ${ }^{1}$ This is actually an upper bound, as there can be some double counting.

[^2]: Images from Wikipedia Commons

