CSE 548: Algorithms

Randomized Algorithms

R. Sekar

Example 1: Routing

- What is the best way to route a packet from *X* to *Y*, esp. in high speed, high volume networks
 - A: Pick the shortest path from *X* to *Y*
 - B: Send the packet to a random node Z, and let Z route it to Y (possibly using a shortest path from Z to Y)

Example 1: Routing

- What is the best way to route a packet from *X* to *Y*, esp. in high speed, high volume networks
 - A: Pick the shortest path from *X* to *Y*
 - B: Send the packet to a random node Z, and let Z route it to Y (possibly using a shortest path from Z to Y)
- Valiant showed in 1981 that surprisingly, B works better!
 - Turing award recipient in 2010

Example 2: Transmitting on shared network

- What is the best way for *n* hosts to share a common a network?
 - A: Give each host a turn to transmit
 - B: Maintain a queue of hosts that have something to transmit, and use a FIFO algorithm to grant access
 - C: Let every one try to transmit. If there is contention, use random choice to resove it.
- Which choice is better?

Topics

1. Intro

2. Probability Basics

 Discrete Probability
 Coupon Collection
 Birthday
 Balls and Bins

 3. Taming distribution

 Quicksort

Caching Hashing Universal/Perfect hash **Closest** pair 4. Probabilistic Algorithms **Bloom filter** Rabin-Karp Prime testing

Simplify, Decentralize, Ensure Fairness

- Randomization can often:
 - Enable the use of a simpler algorithm
 - Cut down the amount of book-keeping
 - Support decentralized decision-making
 - Ensure fairness
- Examples:

Media access protocol: Avoids need for coordination — important here, because coordination needs connectivity!

Load balancing: Instead of maintaining centralized information about processor loads, dispatch jobs randomly.

Congestion avoidance: Similar to load balancing

Set Theory and Probability

- A countable *sample space* S is a nonempty countable set.
- An *outcome* ω is an element of S.
- A *probability function* $Pr : S \longrightarrow \mathbb{R}$ is a total function such that
 - $\Pr[\omega] \geq 0$ for all $\omega \in \mathcal{S}$, and
 - $\sum_{\omega \in \mathcal{S}} \Pr[\omega] = 1$

Set Theory and Probability

- A countable *sample space* S is a nonempty countable set.
- An *outcome* ω is an element of S.
- A probability function $Pr : S \longrightarrow \mathbb{R}$ is a total function such that
 - $\Pr[\omega] \geq 0$ for all $\omega \in \mathcal{S}$, and
 - $\sum_{\omega \in \mathcal{S}} \Pr[\omega] = 1$
- An *event* E is a subset of S. Its probability is given by:

$$\Pr[E] = \sum_{\omega \in E} \Pr[\omega]$$

Many probability rules follow from the rules on set cardinality Sum Rule: If $E_0, E_1, \ldots, E_n, \ldots$ are pairwise disjoint events, then $Pr[\bigcup_{n \in \mathbb{N}} E_n] = \sum_{n \in \mathbb{N}} Pr[E_n]$

Many probability rules follow from the rules on set cardinality Sum Rule: If $E_0, E_1, ..., E_n, ...$ are pairwise disjoint events, then $Pr[\bigcup_{n \in \mathbb{N}} E_n] = \sum_{n \in \mathbb{N}} Pr[E_n]$ Complement Rule: $Pr[\overline{A}] = 1 - Pr[A]$

Many probability rules follow from the rules on set cardinality

Sum Rule: If $E_0, E_1, \ldots, E_n, \ldots$ are pairwise disjoint events, then

 $Pr[\bigcup_{n\in\mathbb{N}}E_n]=\sum_{n\in\mathbb{N}}Pr[E_n]$

Complement Rule: $Pr[\overline{A}] = 1 - Pr[A]$

Difference Rule:

 $Pr[B-A] = Pr[B] - Pr[A \cap B]$

Many probability rules follow from the rules on set cardinality

Sum Rule: If $E_0, E_1, \ldots, E_n, \ldots$ are pairwise disjoint events, then

 $Pr[\bigcup_{n\in\mathbb{N}} E_n] = \sum_{n\in\mathbb{N}} Pr[E_n]$

Complement Rule: $Pr[\overline{A}] = 1 - Pr[A]$

Difference Rule:

$$Pr[B-A] = Pr[B] - Pr[A \cap B]$$

Inclusion-Exclusion:

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

Union Bound: $Pr[A \cup B] \leq Pr[A] + Pr[B]$

Many probability rules follow from the rules on set cardinality

Sum Rule: If $E_0, E_1, \ldots, E_n, \ldots$ are pairwise disjoint events, then

 $Pr[\bigcup_{n\in\mathbb{N}}E_n]=\sum_{n\in\mathbb{N}}Pr[E_n]$

Complement Rule: $Pr[\overline{A}] = 1 - Pr[A]$

Difference Rule:

$$Pr[B-A] = Pr[B] - Pr[A \cap B]$$

Inclusion-Exclusion:

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

Union Bound: $Pr[A \cup B] \le Pr[A] + Pr[B]$ Monotonicity: $A \subseteq B \rightarrow Pr[A] \le Pr[B]$

Uniform Probability Spaces

A finite probability space S said to be uniform if $Pr[\omega]$ is the same for all ω . In such spaces:

$$\Pr[E] = \frac{|E|}{|\mathcal{S}|}$$

We often this assumption.

Conditional Probability

- Probability of an event under a condition
- The condition limits consideration to a subset of outcomes
 - Consider this subset (rather than whole of \mathcal{S}) as the space of all possible outcomes

$$Pr[X|Y] = \frac{Pr[X \cap Y]}{Pr[Y]}$$

Product Rule 2: $Pr[E_1 \cap E_2] = Pr[E_1] \cdot Pr[E_2|E_1]$

Product Rule 2: $Pr[E_1 \cap E_2] = Pr[E_1] \cdot Pr[E_2|E_1]$

Product Rule 3: $Pr[E_1 \cap E_2 \cap E_3] = Pr[E_1] \cdot Pr[E_2|E_1] \cdot Pr[E_3|E_1 \cap E_2]$

Product Rule 2: $Pr[E_1 \cap E_2] = Pr[E_1] \cdot Pr[E_2|E_1]$

Product Rule 3: $Pr[E_1 \cap E_2 \cap E_3] = Pr[E_1] \cdot Pr[E_2|E_1] \cdot Pr[E_3|E_1 \cap E_2]$

Bayes' Rule: $Pr[B|A] = \frac{Pr[A|B] \cdot Pr[B]}{Pr[A]}$

Product Rule 2: $Pr[E_1 \cap E_2] = Pr[E_1] \cdot Pr[E_2|E_1]$

Product Rule 3: $Pr[E_1 \cap E_2 \cap E_3] = Pr[E_1] \cdot Pr[E_2|E_1] \cdot Pr[E_3|E_1 \cap E_2]$

Bayes' Rule:
$$Pr[B|A] = \frac{Pr[A|B] \cdot Pr[B]}{Pr[A]}$$

Total Probability Law: $Pr[A] = Pr[A|E] \cdot Pr[E] + Pr[A|\overline{E}] \cdot Pr[\overline{E}]$

Total Probability Law 2: If E_i are mutually disjoint and $Pr[\bigcup E_i] = 1$ then $Pr[A] = \sum Pr[A|E_i] \cdot Pr[E_i]$

Inclusion-Exclusion: $Pr[A \cup B|C] = Pr[A|C] + Pr[B|C] - Pr[A \cap B|C]$

Independence

- An event *A* is independent of *B* iff the following (equivalent) conditions hold:
 - Pr[A|B] = Pr[A]
 - $Pr[A \cap B] = Pr[A] \cdot Pr[B]$
 - *B* is independent of *A*
- Often, independence is an assumption.
- Definition can be generalized to 3 (or *n*) events. Events E_1 , E_2 and E_3 are mutually independent iff all of the following hold:
 - $Pr[E_1 \cap E_2] = Pr[E_1] \cdot Pr[E_2]$
 - $Pr[E_2 \cap E_3] = Pr[E_2] \cdot Pr[E_3]$
 - $Pr[E_1 \cap E_3] = Pr[E_1] \cdot Pr[E_3]$
 - $Pr[E_1 \cap E_2 \cap E_3] = Pr[E_1] \cdot Pr[E_2] \cdot Pr[E_3]$

- Suppose that your favorite cereal has a coupon inside. There are *n* types of coupons, but only one of them in each box. How many boxes will you have to buy before you can expect to have all of the *n* types?
- What is your guess?

- Suppose that your favorite cereal has a coupon inside. There are *n* types of coupons, but only one of them in each box. How many boxes will you have to buy before you can expect to have all of the *n* types?
- What is your guess?
- Let us work out the expectation. Let us say that you have so far j 1 types of coupons, and are now looking to get to the *j*th type. Let X_j denote the number of boxes you need to purchase before you get the j + 1th type.

• Note $E[X_j] = 1/p_j$, where p_j is the probability of getting the *jth* coupon.

- Note $E[X_j] = 1/p_j$, where p_j is the probability of getting the *jth* coupon.
- Note $p_j = (n j)/n$, so, $E[X_j] = n/(n j)$

- Note $E[X_j] = 1/p_j$, where p_j is the probability of getting the *jth* coupon.
- Note $p_j = (n j)/n$, so, $E[X_j] = n/(n j)$
- We have all *n* types when we finish the X_{n-1} phase:

$$E[X] = \sum_{i=0}^{n-1} E[X_i] = \sum_{i=0}^{n-1} n/(n-j) = nH(n)$$

• Note H(n) is the harmonic sum, and is bounded by $\ln n$

- Note $E[X_j] = 1/p_j$, where p_j is the probability of getting the *jth* coupon.
- Note $p_j = (n j)/n$, so, $E[X_j] = n/(n j)$
- We have all *n* types when we finish the X_{n-1} phase:

$$E[X] = \sum_{i=0}^{n-1} E[X_i] = \sum_{i=0}^{n-1} n/(n-j) = nH(n)$$

- Note H(n) is the harmonic sum, and is bounded by $\ln n$
- Perhaps unintuitively, you need to buy ln n cereal boxes to obtain one useful coupon.

Birthday Paradox

- What is the smallest size group where there are at least two people with the same birthday?
 - 365
 - 183
 - 61
 - 25

Birthday Problem

- The probability that two students have different birthdays: $\frac{364}{365}$
- In a class of *n*, there are $\binom{n}{2}$ pairs of students to consider.
 - If we assume that whether one pair shares a birthday is independent of another, we can simply multiply these probabilities

Pr(no two persons with same birthday) pprox

$$\left(\frac{364}{365}\right)^{\binom{n}{2}} \approx \left(\frac{364}{365}\right)^{n^2/2}$$

- For n = 44, this formula yields a probability of 7%
 - n = 23 is enough to have better than even chance of finding two with the same birthday.

Birthday Problem: More Accurate Approach

- What is the probability of finding two people with the same birthday in this class?
- There are 365ⁿ possible sequences of birthdays for *n* people
 - We assume these are all equally likely
- Number of sequences without repetition: $365 \cdot 364 \cdots (365 (n 1))$
- Probability that no two of *n* persons have same birthday:

$$\frac{365}{365} \cdot \frac{365-1}{365} \cdots \frac{365-(n-1)}{365} = \left(1 - \frac{0}{365}\right) \left(1 - \frac{1}{365}\right) \cdots \left(1 - \frac{n-1}{365}\right)$$

• Use the approximation $(1 - x) < e^{-x}$ to derive an upper bound:

 $Pr(\text{no two persons with same birthday}) < e^0 \cdot e^{-\frac{1}{365}} \cdot e^{-\frac{n-1}{365}} = e^{\frac{-1}{365}\sum_{i=1}^{n-1}i} = e^{\frac{-n(n-1)}{2*365}}$

• For n = 44, this evaluates to 7.5%

Birthday Paradox Vs Coupon Collection

• Two sides of the same problem

Coupon Collection: What is the minumum number of samples needed to cover every one of *N* values

Birthday problem: What is the maximum number of samples that can avoid covering any value more than once?

Birthday Paradox Vs Coupon Collection

• Two sides of the same problem

Coupon Collection: What is the minumum number of samples needed to cover every one of *N* values

Birthday problem: What is the maximum number of samples that can avoid covering any value more than once?

- So, if we want enough people to ensure that every day of the year is covered as a birthday, we will need $365 \ln 365 \approx 2153$ people!
 - Almost 100 times as many as needed for one duplicate birthday!

If *m* balls are thrown at random into *n* bins:

• What should *m* be to have more than one ball in some bin?

- What should *m* be to have more than one ball in some bin?
 - Birthday problem

- What should *m* be to have more than one ball in some bin?
 - Birthday problem
- What should *m* be to have at least one ball per bin?

- What should *m* be to have more than one ball in some bin?
 - Birthday problem
- What should *m* be to have at least one ball per bin?
 - Coupon collection

- What should *m* be to have more than one ball in some bin?
 - Birthday problem
- What should *m* be to have at least one ball per bin?
 - Coupon collection
- What is the maximum number of balls in any bin?
 - Such problems arise in load-balancing, hashing, etc.
Balls and Bins: Max Occupancy

- Probability $p_{1,k}$ that the first bin receives at least k balls:
 - Choose k balls in $\binom{m}{k}$ ways
 - These k balls should fall into the first bin: prob. is $(1/n)^k$
 - Other balls may fall anywhere, i.e., probability 1:1

$$\binom{m}{k} \left(\frac{1}{n}\right)^k = \frac{m \cdot (m-1) \cdots (m-k+1)}{k! n^k} \le \frac{m^k}{k! n^k}$$

¹This is actually an upper bound, as there can be some double counting.

Balls and Bins: Max Occupancy

- Probability $p_{1,k}$ that the first bin receives at least k balls:
 - Choose k balls in $\binom{m}{k}$ ways
 - These k balls should fall into the first bin: prob. is $(1/n)^k$
 - Other balls may fall anywhere, i.e., probability 1:1

$$\binom{m}{k} \left(\frac{1}{n}\right)^k = \frac{m \cdot (m-1) \cdots (m-k+1)}{k! n^k} \leq \frac{m^k}{k! n^k}$$

• Let m = n, and use Sterling's approx. $k! \approx \sqrt{2\pi k} (k/e)^k$:

$$P_k = \sum_{i=1}^n p_{i,k} \le n \cdot \frac{1}{k!} \le n \cdot \left(\frac{e}{k}\right)^k$$

¹This is actually an upper bound, as there can be some double counting.

Balls and Bins: Max Occupancy

- Probability $p_{1,k}$ that the first bin receives at least k balls:
 - Choose k balls in $\binom{m}{k}$ ways
 - These k balls should fall into the first bin: prob. is $(1/n)^k$
 - Other balls may fall anywhere, i.e., probability 1:1

$$\binom{m}{k}\left(\frac{1}{n}\right)^{k} = \frac{m \cdot (m-1) \cdots (m-k+1)}{k! n^{k}} \leq \frac{m^{k}}{k! n^{k}}$$

• Let m = n, and use Sterling's approx. $k! \approx \sqrt{2\pi k} (k/e)^k$:

$$P_k = \sum_{i=1}^n p_{i,k} \le n \cdot \frac{1}{k!} \le n \cdot \left(\frac{e}{k}\right)^k$$

• Some arithmetic simplification will show that $P_k < 1/n$ when

$$k = \frac{3\ln n}{\ln \ln n}$$

¹This is actually an upper bound, as there can be some double counting.

m balls are thrown at random into *n* bins:

• Min. one bin with expectation of 2 balls: $m = \sqrt{2n}$

m balls are thrown at random into *n* bins:

- Min. one bin with expectation of 2 balls: $m = \sqrt{2n}$
- No bin expected to be empty: $m = n \ln n$

m balls are thrown at random into *n* bins:

- Min. one bin with expectation of 2 balls: $m = \sqrt{2n}$
- No bin expected to be empty: $m = n \ln n$
- Expected number of empty bins: $ne^{-m/n}$

m balls are thrown at random into *n* bins:

- Min. one bin with expectation of 2 balls: $m = \sqrt{2n}$
- No bin expected to be empty: $m = n \ln n$
- Expected number of empty bins: $ne^{-m/n}$
- Max. balls in any bin when m = n:

$\Theta(\ln n / \ln \ln n)$

- This is a probabilistic bound: chance of finding any bin with higher occupancy is 1/*n* or less.
- Note that the absolute maximum is *n*.

Randomized Quicksort

• Picks a pivot at random. What is its complexity?

Randomized Quicksort

- Picks a pivot at random. What is its complexity?
- If pivot index is picked uniformly at random over the interval [l, h], then:
 - every array element is equally likely to be selected as the pivot
 - every partition is equally likely
 - thus, *expected* complexity of *randomized* quicksort is given by:

$$T(n) = n + \frac{1}{n} \sum_{i=1}^{n-1} (T(i) + T(n-i))$$

Randomized Quicksort

- Picks a pivot at random. What is its complexity?
- If pivot index is picked uniformly at random over the interval [l, h], then:
 - every array element is equally likely to be selected as the pivot
 - every partition is equally likely
 - thus, *expected* complexity of *randomized* quicksort is given by:

$$T(n) = n + \frac{1}{n} \sum_{i=1}^{n-1} (T(i) + T(n-i))$$

Summary: Input need not be random

• Expected *O*(*n* log *n*) performance comes from *externally forced* randomness in picking the pivot

- Caching algorithms have to evict entries when there is a miss
 - As do virtual memory systems on a page fault

- Caching algorithms have to evict entries when there is a miss
 - As do virtual memory systems on a page fault
- Optimally, we should evict the "farthest in future" entry
 - But we can't predict the future!

- Caching algorithms have to evict entries when there is a miss
 - As do virtual memory systems on a page fault
- Optimally, we should evict the "farthest in future" entry
 - But we can't predict the future!
- Result: many candidates for eviction. How can be avoid making bad (worst-case) choices repeatedly, even if input behaves badly?

- Caching algorithms have to evict entries when there is a miss
 - As do virtual memory systems on a page fault
- Optimally, we should evict the "farthest in future" entry
 - But we can't predict the future!
- Result: many candidates for eviction. How can be avoid making bad (worst-case) choices repeatedly, even if input behaves badly?
- Approach: pick one of the candidates at random!

• A data structure for implementing:

Dictionaries: Fast look up of a record based on a key.

Sets: Fast membership check.

- A data structure for implementing: Dictionaries: Fast look up of a record based on a key.
 Sets: Fast membership check.
- Support expected O(1) time lookup, insert, and delete

- A data structure for implementing: Dictionaries: Fast look up of a record based on a key.
 Sets: Fast membership check.
- Support expected O(1) time lookup, insert, and delete
- Hash table entries may be:

fat: store a pair (key, object)
lean: store pointer to object containing key

- A data structure for implementing:
 Dictionaries: Fast look up of a record based on a key.
 Sets: Fast membership check.
- Support expected O(1) time lookup, insert, and delete
- Hash table entries may be:

fat: store a pair (key, object)
lean: store pointer to object containing key

- Two main questions:
 - How to avoid O(n) worst case behavior?
 - How to ensure average case performance can be realized for arbitrary distribution of keys?

Direct access: A fancy name for arrays. Not applicable in most cases where the universe \mathcal{U} of keys is very large.

Direct access: A fancy name for arrays. Not applicable in most cases where the universe \mathcal{U} of keys is very large.

Direct access: A fancy name for arrays. Not applicable in most cases where the universe \mathcal{U} of keys is very large.

- Use $A[h(x) \mod s]$, where s is the size of array
 - Sometimes, we fold the mod operation into *h*.

Direct access: A fancy name for arrays. Not applicable in most cases where the universe \mathcal{U} of keys is very large.

- Use $A[h(x) \mod s]$, where s is the size of array
 - Sometimes, we fold the mod operation into *h*.
- Array elements typically called *buckets*

Direct access: A fancy name for arrays. Not applicable in most cases where the universe \mathcal{U} of keys is very large.

- Use $A[h(x) \mod s]$, where s is the size of array
 - Sometimes, we fold the mod operation into *h*.
- Array elements typically called *buckets*
- Collisions bound to occur since $s \ll |\mathcal{U}|$
 - Either h(x) = h(y), or
 - $h(x) \neq h(y)$ but $h(x) \equiv h(y) \pmod{s}$

Collisions in Hash tables

• *Load factor* α : Ratio of number of keys to number of buckets

Collisions in Hash tables

- Load factor α : Ratio of number of keys to number of buckets
- *If* keys were random:
 - What is the max α if we want \leq 1 collisions in the table?
 - If $\alpha = 1$, what is the maximum number of collisions to expect?

Collisions in Hash tables

- Load factor α : Ratio of number of keys to number of buckets
- If keys were random:
 - What is the max α if we want \leq 1 collisions in the table?
 - If $\alpha = 1$, what is the maximum number of collisions to expect?
- Both questions can be answered from balls-and-bins results: $1/\sqrt{n}$, and $O(\ln n / \ln \ln n)$
- **Real world keys are not random.** Your hash table implementation needs to achieve its performance goals independent of this distribution.

Chained Hash Table

- Each bucket is a linked list.
- Any key that hashes to a bucket is inserted into that bucket.
- What is the *average* search time, as a function of α ?

Chained Hash Table

- Each bucket is a linked list.
- Any key that hashes to a bucket is inserted into that bucket.
- What is the *average* search time, as a function of α ?
 - It is $1 + \alpha$ if:
 - you assume that the distribution of lookups is independent of the table entries, OR,
 - the chains are not too long (i.e., α is small)

Open addressing

If there is a collision, probe other empty slots
 Linear probing: If h(x) is occupied, try h(x) + i for i = 1, 2, ...
 Binary probing: Try h(x) ⊕ i, where ⊕ stands for exor.
 Quadratic probing: For ith probe, use h(x) + c₁i + c₂i²

Open addressing

- If there is a collision, probe other empty slots
 Linear probing: If h(x) is occupied, try h(x) + i for i = 1, 2, ...
 Binary probing: Try h(x) ⊕ i, where ⊕ stands for exor.
 Quadratic probing: For ith probe, use h(x) + c₁i + c₂i²
- Criteria for secondary probes

Completeness: Should cycle through all possible slots in table Clustering: Probe sequences shouldn't coalesce to long chains Locality: Preserve locality; typically conflicts with clustering.

Open addressing

- If there is a collision, probe other empty slots
 Linear probing: If h(x) is occupied, try h(x) + i for i = 1, 2, ...
 Binary probing: Try h(x) ⊕ i, where ⊕ stands for exor.
 Quadratic probing: For ith probe, use h(x) + c₁i + c₂i²
- Criteria for secondary probes

Completeness: Should cycle through all possible slots in table Clustering: Probe sequences shouldn't coalesce to long chains Locality: Preserve locality; typically conflicts with clustering.

• Average search time can be $O(1/(1-\alpha)^2)$ for linear probing, and $O(1/(1-\alpha))$ for quadratic probing.

- Chaining leads to fewer collisions
 - Clustering causes more collisions w/ open addressing for same α
 - However, for lean tables, open addressing uses half the space of chaining, so you can use a much lower α for same space usage.

- Chaining leads to fewer collisions
 - Clustering causes more collisions w/ open addressing for same lpha
 - However, for lean tables, open addressing uses half the space of chaining, so you can use a much lower α for same space usage.
- Chaining is more tolerant of "lumpy" hash functions
 - For instance, if h(x) and h(x + 1) are often very close, open hashing can experience longer chains when inputs are closely spaced.
 - Hash functions for open-hashing having to be selected very carefully

- Chaining leads to fewer collisions
 - Clustering causes more collisions w/ open addressing for same lpha
 - However, for lean tables, open addressing uses half the space of chaining, so you can use a much lower α for same space usage.
- Chaining is more tolerant of "lumpy" hash functions
 - For instance, if h(x) and h(x + 1) are often very close, open hashing can experience longer chains when inputs are closely spaced.
 - Hash functions for open-hashing having to be selected very carefully
- Linked lists are not cache-friendly
 - Can be mitigated w/ arrays for buckets instead of linked lists

- Chaining leads to fewer collisions
 - Clustering causes more collisions w/ open addressing for same lpha
 - However, for lean tables, open addressing uses half the space of chaining, so you can use a much lower α for same space usage.
- Chaining is more tolerant of "lumpy" hash functions
 - For instance, if h(x) and h(x + 1) are often very close, open hashing can experience longer chains when inputs are closely spaced.
 - Hash functions for open-hashing having to be selected very carefully
- Linked lists are not cache-friendly
 - Can be mitigated w/ arrays for buckets instead of linked lists
- Not all quadratic probes cover all slots (but some can)

Resizing

- Hard to predict the right size for hash table in advance
 - Ideally, 0.5 $\leq \alpha \leq$ 1, so we need an accurate estimate
- Hard to predict the right size for hash table in advance
 - Ideally, 0.5 $\leq \alpha \leq$ 1, so we need an accurate estimate
- It is stupid to ask programmers to guess the size
 - Without a good basis, only terrible guesses are possible

- Hard to predict the right size for hash table in advance
 - Ideally, 0.5 $\leq \alpha \leq$ 1, so we need an accurate estimate
- It is stupid to ask programmers to guess the size
 - Without a good basis, only terrible guesses are possible
- *Right solution:* Resize tables automatically.
 - When α becomes too large (or small), rehash into a bigger (or smaller) table

- Hard to predict the right size for hash table in advance
 - Ideally, 0.5 $\leq \alpha \leq$ 1, so we need an accurate estimate
- It is stupid to ask programmers to guess the size
 - Without a good basis, only terrible guesses are possible
- *Right solution:* Resize tables automatically.
 - $\bullet\,$ When α becomes too large (or small), rehash into a bigger (or smaller) table
 - Rehashing is O(n), but if you increase size by a factor, then amortized cost is still O(1)

- Hard to predict the right size for hash table in advance
 - Ideally, 0.5 $\leq \alpha \leq$ 1, so we need an accurate estimate
- It is stupid to ask programmers to guess the size
 - Without a good basis, only terrible guesses are possible
- *Right solution:* Resize tables automatically.
 - $\bullet\,$ When α becomes too large (or small), rehash into a bigger (or smaller) table
 - Rehashing is O(n), but if you increase size by a factor, then amortized cost is still O(1)
 - Exercise: How to ensure amortized O(1) cost when you resize up as well as down?

• Worst case search time is O(n) for a table of size n

- Worst case search time is O(n) for a table of size n
- With hash tables, it is all about avoiding the worst case, and achieving the average case

- Worst case search time is O(n) for a table of size n
- With hash tables, it is all about avoiding the worst case, and achieving the average case
- Two main chalenges:
 - Input is not random, e.g., names or IP addresses.
 - Even when input is random, *h* may cause "lumping," or non-uniform dispersal of \mathcal{U} to the set $\{1, \ldots, n\}$

- Worst case search time is O(n) for a table of size n
- With hash tables, it is all about avoiding the worst case, and achieving the average case
- Two main chalenges:
 - Input is not random, e.g., names or IP addresses.
 - Even when input is random, *h* may cause "lumping," or non-uniform dispersal of \mathcal{U} to the set $\{1, \ldots, n\}$
- Two main techniques Universal hashing

Perfect hashing

Universal Hashing

• No single hash function can be good on all inputs

• Any function $\mathcal{U} \to \{1, \dots, n\}$ must map $|\mathcal{U}|/n$ inputs to same value!

Note: $|\mathcal{U}|$ *can be much, much larger than n.*

Universal Hashing

No single hash function can be good on all inputs

• Any function $\mathcal{U} \to \{1, \dots, n\}$ must map $|\mathcal{U}|/n$ inputs to same value!

Note: $|\mathcal{U}|$ *can be much, much larger than n.*

Definition

A family of hash functions H is universal if

$$Pr_{h\in\mathcal{H}}[h(x)=h(y)]=rac{1}{n} \ for \ all \ x\neq y$$

Universal Hashing

No single hash function can be good on all inputs

• Any function $\mathcal{U} \to \{1, \dots, n\}$ must map $|\mathcal{U}|/n$ inputs to same value!

Note: $|\mathcal{U}|$ can be much, much larger than n.

Definition

A family of hash functions \mathcal{H} is universal if

$$Pr_{h\in\mathcal{H}}[h(x)=h(y)]=rac{1}{n} \ for \ all \ x\neq y$$

Meaning: If we pick h at random from the family H, then, probability of collisions is the same for any two elements.

Contrast with non-universal hash functions such as

 $h(x) = ax \mod n$, (*a* is chosen at random)

Note y and y + kn collide with a probability of 1 *for every a*.

Universal Hashing Using Multiplication

Observation (Multiplication Modulo Prime)

If p is a prime and 0 < a < p

- $\{1a, 2a, 3a, \dots, (p-1)a\} = \{1, 2, \dots, p-1\} \pmod{p}$
- $\forall a \exists b \ ab \equiv 1 \pmod{p}$

Universal Hashing Using Multiplication

Observation (Multiplication Modulo Prime)

If p is a prime and 0 < a < p

- $\{1a, 2a, 3a, \dots, (p-1)a\} = \{1, 2, \dots, p-1\} \pmod{p}$
- $\forall a \exists b ab \equiv 1 \pmod{p}$

Prime multiplicative hashing

Let the key $x \in \mathcal{U}$, $p > |\mathcal{U}|$ be prime, and 0 < r < p be random. Then $h(x) = (rx \mod p) \mod n$

is universal.

Prove: $Pr[h(x) = h(y)] = \frac{1}{n}$, for $x \neq y$

86 / 169

Universality of prime multiplicative hashing

- Need to show $Pr[h(x) = h(y)] = \frac{1}{n}$, for $x \neq y$
- h(x) = h(y) means $(rx \mod p) \mod n = (ry \mod p) \mod n$
- Note $a \mod n = b \mod n$ means a = b + kn for some integer k. Using this, we eliminate **mod** n from above equation to get:

$$rx \mod p = kn + ry \mod p, \text{ where } k \leq \lfloor p/n \rfloor$$
$$rx \equiv kn + ry \pmod{p}$$
$$r(x - y) \equiv kn \pmod{p}$$
$$r \equiv kn(x - y)^{-1} \pmod{p}$$

• So, x, y collide if $r = n(x-y)^{-1}, 2n(x-y)^{-1}, \dots, \lfloor p/n \rfloor n(x-y)^{-1}$

• In other words, x and y collide for p/n out of p possible values of r, i.e., collision probability is 1/n

• Faster: avoids need for computing modulo prime

- Faster: avoids need for computing modulo prime
- When $|\mathcal{U}| < 2^w$, $n = 2^l$ and *a* an odd random number

$$h(x) = \left\lfloor \frac{ax \mod 2^w}{2^{w-l}} \right\rfloor$$

- Faster: avoids need for computing modulo prime
- When $|\mathcal{U}| < 2^w$, $n = 2^l$ and *a* an odd random number

$$h(x) = \left\lfloor \frac{ax \mod 2^w}{2^{w-l}} \right\rfloor$$

• Can be implemented efficiently if *w* is the wordsize:

(a*x) >> (WORDSIZE-HASHBITS)

- Faster: avoids need for computing modulo prime
- When $|\mathcal{U}| < 2^w$, $n = 2^l$ and *a* an odd random number

$$h(x) = \left\lfloor \frac{ax \mod 2^w}{2^{w-l}} \right\rfloor$$

• Can be implemented efficiently if *w* is the wordsize:

(a*x) >> (WORDSIZE-HASHBITS)

• Scheme is near-universal: collision probability is $O(1)/2^{l}$

Prime Multiplicative Hash for Vectors

Let *p* be a prime number, and the key *x* be a vector $[x_1, \ldots, x_k]$ where $0 \le x_i < p$. Let

$$h(x) = \sum_{i=1}^k r_i x_i \pmod{p}$$

If $0 < r_i < p$ are chosen at random, then *h* is universal.

Prime Multiplicative Hash for Vectors

Let *p* be a prime number, and the key *x* be a vector $[x_1, \ldots, x_k]$ where $0 \le x_i < p$. Let

$$h(x) = \sum_{i=1}^k r_i x_i \pmod{p}$$

If $0 < r_i < p$ are chosen at random, then *h* is universal.

• Strings can also be handled like vectors, or alternatively, as a polynomial evaluated at a random point *a*, with *p* a prime:

$$h(x) = \sum_{i=0}^{l} x_i a^i \mod p$$

• Since $x \neq y$, there exists an *i* such that $x_i \neq y_i$

- Since $x \neq y$, there exists an *i* such that $x_i \neq y_i$
- When collision occurs, $\sum_{j=1}^{k} r_j x_j = \sum_{j=1}^{k} r_j y_j \pmod{p}$

- Since $x \neq y$, there exists an *i* such that $x_i \neq y_i$
- When collision occurs, $\sum_{j=1}^{k} r_j x_j = \sum_{j=1}^{k} r_j y_j \pmod{p}$
- Rearranging, $\sum_{j \neq i} r_j(x_j y_j) = r_i(y_i x_i) \pmod{p}$

- Since $x \neq y$, there exists an *i* such that $x_i \neq y_i$
- When collision occurs, $\sum_{j=1}^{k} r_j x_j = \sum_{j=1}^{k} r_j y_j \pmod{p}$
- Rearranging, $\sum_{j \neq i} r_j(x_j y_j) = r_i(y_i x_i) \pmod{p}$
- The lhs evaluates to some *c*, and we need to estimate the probability that rhs evaluates to this *c*

- Since $x \neq y$, there exists an *i* such that $x_i \neq y_i$
- When collision occurs, $\sum_{j=1}^{k} r_j x_j = \sum_{j=1}^{k} r_j y_j \pmod{p}$
- Rearranging, $\sum_{j \neq i} r_j(x_j y_j) = r_i(y_i x_i) \pmod{p}$
- The lhs evaluates to some *c*, and we need to estimate the probability that rhs evaluates to this *c*
- Using multiplicative inverse property, we see that $r_i = c(y_i x_i)^{-1} \pmod{p}$.

- Since $x \neq y$, there exists an *i* such that $x_i \neq y_i$
- When collision occurs, $\sum_{j=1}^{k} r_j x_j = \sum_{j=1}^{k} r_j y_j \pmod{p}$
- Rearranging, $\sum_{j \neq i} r_j(x_j y_j) = r_i(y_i x_i) \pmod{p}$
- The lhs evaluates to some *c*, and we need to estimate the probability that rhs evaluates to this *c*
- Using multiplicative inverse property, we see that $r_i = c(y_i x_i)^{-1} \pmod{p}$.
- Since y_i, x_i < p, it is easy to see from this equation that the collision-causing value of r_i is distinct for distinct y_i.

- Since $x \neq y$, there exists an *i* such that $x_i \neq y_i$
- When collision occurs, $\sum_{j=1}^{k} r_j x_j = \sum_{j=1}^{k} r_j y_j \pmod{p}$
- Rearranging, $\sum_{j \neq i} r_j(x_j y_j) = r_i(y_i x_i) \pmod{p}$
- The lhs evaluates to some *c*, and we need to estimate the probability that rhs evaluates to this *c*
- Using multiplicative inverse property, we see that $r_i = c(y_i x_i)^{-1} \pmod{p}$.
- Since $y_i, x_i < p$, it is easy to see from this equation that the collision-causing value of r_i is distinct for distinct y_i .
- Viewed another way, exactly one of *p* choices of r_i would cause a collision between x_i and y_i , i.e., $Pr_h[h(x) = h(y)] = 1/p$

Perfect hashing

Static: Pick a hash function (or set of functions) that avoids collisions for a given set of keys

Perfect hashing

- Static: Pick a hash function (or set of functions) that avoids collisions for a given set of keys
- Dynamic: Keys need not be static.
 - Approach 1: Use $O(n^2)$ storage. Expected collision on *n* items is 0. But too wasteful of storage.
 - Don't forget: more memory usually means less performance due to cache effects.

Perfect hashing

- Static: Pick a hash function (or set of functions) that avoids collisions for a given set of keys
- Dynamic: Keys need not be static.
 - Approach 1: Use $O(n^2)$ storage. Expected collision on *n* items is 0. But too wasteful of storage.
 - Don't forget: more memory usually means less performance due to cache effects. Approach 2: Use a secondary hash table for each bucket of size n_i^2 , where n_i is the number of elements in the bucket.
 - Uses only O(n) storage, *if h is universal*

Hashing Summary

- Excellent average case performance
 - Pointer chasing is expensive on modern hardware, so improvement from $O(\log n)$ of binary trees to expected O(1) for hash tables is significant.

Hashing Summary

- Excellent average case performance
 - Pointer chasing is expensive on modern hardware, so improvement from $O(\log n)$ of binary trees to expected O(1) for hash tables is significant.
- But all benefits will be reversed if collisions occur too often
 - Universal hashing is a way to ensure expected average case even when input is not random.
- Perfect hashing can provide efficient performance even in the worst case, but the benefits are likely small in practice.

Finding closest pair of points

Problem: Given a set of *n* points in a *d*-dimensional space, identify the two that have the smallest Euclidean distance between them.

Applications: A central problem in graphics, vision, air-traffic control, navigation, molecular modeling, and so on.

Randomized Closest Pair: Key Ideas

- Divide the plane into small squares, hash points into them
 - Pairwise comparisons can be limited to points within the squares very closeby

Randomized Closest Pair: Key Ideas

- Divide the plane into small squares, hash points into them
 - Pairwise comparisons can be limited to points within the squares very closeby
- Process the points in some random order
 - Maintain min. distance δ among points processed so far.
 - Update δ as more points are processed

Randomized Closest Pair: Key Ideas

- Divide the plane into small squares, hash points into them
 - Pairwise comparisons can be limited to points within the squares very closeby
- Process the points in some random order
 - Maintain min. distance δ among points processed so far.
 - Update δ as more points are processed
- At any point, the "small squares" have a size of $\delta/2$
 - At most one point per square (or else points are closer than δ)
 - Points closer than δ will at most be two squares from each other
 - Only constant number of points to consider
 - Requires rehashing all processed points when δ is updated.
- Correctness is relatively clear, so we focus on performance
- Two main concerns

- Correctness is relatively clear, so we focus on performance
- Two main concerns

Storage: # of squares is $1/\delta^2$, which can be very large

- Correctness is relatively clear, so we focus on performance
- Two main concerns

Storage: # of squares is $1/\delta^2$, which can be very large

• Use a dictionary (hash table) that stores up to *n* points, and maps $(2x_i/\delta, 2y_i/\delta)$ to $\{1, ..., n\}$

- Correctness is relatively clear, so we focus on performance
- Two main concerns

Storage: # of squares is $1/\delta^2$, which can be very large

- Use a dictionary (hash table) that stores up to *n* points, and maps $(2x_i/\delta, 2y_i/\delta)$ to $\{1, ..., n\}$
- To process a point (x_j, y_j)
 - look up the dictionary at $(x_j/\delta \pm 2, y_j/\delta \pm 2)$
 - insert if it is not closer than δ

- Correctness is relatively clear, so we focus on performance
- Two main concerns

Storage: # of squares is $1/\delta^2$, which can be very large

- Use a dictionary (hash table) that stores up to *n* points, and maps $(2x_i/\delta, 2y_i/\delta)$ to $\{1, ..., n\}$
- To process a point (x_j, y_j)
 - look up the dictionary at $(x_j/\delta \pm 2, y_j/\delta \pm 2)$
 - insert if it is not closer than δ

Rehashing points: If closer than δ – very expensive.

- Correctness is relatively clear, so we focus on performance
- Two main concerns

Storage: # of squares is $1/\delta^2$, which can be very large

- Use a dictionary (hash table) that stores up to *n* points, and maps $(2x_i/\delta, 2y_i/\delta)$ to $\{1, ..., n\}$
- To process a point (x_j, y_j)
 - look up the dictionary at $(x_j/\delta \pm 2, y_j/\delta \pm 2)$
 - insert if it is not closer than δ

Rehashing points: If closer than δ – very expensive.

- Total runtime can all be "charged" to insert operations,
 - incl. those performed during rehashing so we will focus on estimating inserts.

Theorem

If random variable X_i denotes the likelihood of needing to rehash after processing k points, then

$$X_i \leq \frac{2}{i}$$

Theorem

If random variable X_i denotes the likelihood of needing to rehash after processing k points, then

$$X_i \leq \frac{2}{i}$$

• Let p_1, p_2, \ldots, p_i be the points processed so far, and p and q be the closest among these

Theorem

If random variable X_i denotes the likelihood of needing to rehash after processing k points, then

$$X_i \leq \frac{2}{i}$$

- Let p_1, p_2, \ldots, p_i be the points processed so far, and p and q be the closest among these
- Rehashing is needed while processing p_i if $p_i = p$ or $p_i = q$

Theorem

If random variable X_i denotes the likelihood of needing to rehash after processing k points, then

$$X_i \leq \frac{2}{i}$$

- Let p_1, p_2, \ldots, p_i be the points processed so far, and p and q be the closest among these
- Rehashing is needed while processing p_i if $p_i = p$ or $p_i = q$
- Since points are processed in random order, there is a 2/*i* probability that *p_i* is one of *p* or *q*

Theorem

The expected number of inserts is 3n.

Theorem

The expected number of inserts is 3n.

- Processing of *p_i* involves
 - *i* inserts if rehashing takes place, and 1 insert otherwise

Theorem

The expected number of inserts is 3n.

- Processing of *p_i* involves
 - *i* inserts if rehashing takes place, and 1 insert otherwise
- So, expected inserts for processing *p_i* is

$$i \cdot X_i + 1 \cdot (1 - X_i) = 1 + (i - 1) \cdot X_i = 1 + \frac{2(i - 1)}{i} \le 3$$

Theorem

The expected number of inserts is 3n.

- Processing of *p_i* involves
 - *i* inserts if rehashing takes place, and 1 insert otherwise
- So, expected inserts for processing *p_i* is

$$i \cdot X_i + 1 \cdot (1 - X_i) = 1 + (i - 1) \cdot X_i = 1 + \frac{2(i - 1)}{i} \le 3$$

• Upper bound on expected inserts is thus 3*n*

Theorem

The expected number of inserts is 3n.

- Processing of *p_i* involves
 - *i* inserts if rehashing takes place, and 1 insert otherwise
- So, expected inserts for processing *p_i* is

$$i \cdot X_i + 1 \cdot (1 - X_i) = 1 + (i - 1) \cdot X_i = 1 + \frac{2(i - 1)}{i} \le 3$$

• Upper bound on expected inserts is thus 3*n*

Look Ma! I have a linear-time randomized closest pair algorithm—And it is not even probabilistic!

Probabilistic Algorithms

- Algorithms that produce the correct answer with some probability
- By re-running the algorithm many times, we can increase the probability to be arbitrarily close to 1.0.

• To resolve collisions, hash tables have to store keys: *O*(*mw*) bits, where *w* is the number of bits in the key

- To resolve collisions, hash tables have to store keys: *O*(*mw*) bits, where *w* is the number of bits in the key
- What if you want to store very large keys?

- To resolve collisions, hash tables have to store keys: *O*(*mw*) bits, where *w* is the number of bits in the key
- What if you want to store very large keys?
- *Radical idea:* Don't store the key in the table!
 - Potentially w-fold space reduction

• To reduce collisions, use multiple hash functions $h_1, ..., h_k$

- To reduce collisions, use multiple hash functions $h_1, ..., h_k$
- Hash table is simply a bitvector *B*[1..*m*]

- To reduce collisions, use multiple hash functions $h_1, ..., h_k$
- Hash table is simply a bitvector *B*[1..*m*]
- To insert key x, set $B[h_1(x)], B[h_2(x)], ..., B[h_k(x)]$

Images from Wikipedia Commons

- To reduce collisions, use multiple hash functions $h_1, ..., h_k$
- Hash table is simply a bitvector *B*[1..*m*]
- To insert key x, set $B[h_1(x)], B[h_2(x)], ..., B[h_k(x)]$

Images from Wikipedia Commons

- Membership check for y: all $B[h_i(y)]$ should be set
 - No false negatives, but false positives possible

- To reduce collisions, use multiple hash functions $h_1, ..., h_k$
- Hash table is simply a bitvector *B*[1..*m*]
- To insert key x, set $B[h_1(x)], B[h_2(x)], ..., B[h_k(x)]$

Images from Wikipedia Commons

- Membership check for y: all $B[h_i(y)]$ should be set
 - No false negatives, but false positives possible
- No deletions possible in the current algorithm.

• Prob. that a bit is *not* set by h_1 on inserting a key is (1 - 1/m)

- Prob. that a bit is *not* set by h_1 on inserting a key is (1 1/m)
 - The probability it is not set by any h_i is $(1 1/m)^k$

- Prob. that a bit is *not* set by h_1 on inserting a key is (1 1/m)
 - The probability it is not set by any h_i is $(1 1/m)^k$
 - The probability it is not set after *r* key inserts is $(1 1/m)^{kr} \approx e^{-kr/m}$

- Prob. that a bit is *not* set by h_1 on inserting a key is (1 1/m)
 - The probability it is not set by any h_i is $(1 1/m)^k$
 - The probability it is not set after *r* key inserts is $(1 1/m)^{kr} \approx e^{-kr/m}$
- Complementing, the prob. *p* that a certain bit is set is $1 e^{-kr/m}$

- Prob. that a bit is *not* set by h_1 on inserting a key is (1 1/m)
 - The probability it is not set by any h_i is $(1 1/m)^k$
 - The probability it is not set after r key inserts is $(1 1/m)^{kr} \approx e^{-kr/m}$
- Complementing, the prob. *p* that a certain bit is set is $1 e^{-kr/m}$
- For a false positive on a key *y*, all the bits that it hashes to should be a 1. This happens with probability

$$\left(1-e^{-kr/m}\right)^k=(1-p)^k$$

- Note: n = m/r is the storage (in bits) used per key.
- So, we can rewrite the FP equation as:

$$\left(1-e^{-kr/m}\right)^k=\left(1-e^{-k/n}\right)^k$$

- Note: n = m/r is the storage (in bits) used per key.
- So, we can rewrite the FP equation as:

$$\left(1-e^{-kr/m}
ight)^k=\left(1-e^{-k/n}
ight)^k$$

- Optimal value of k can be shown to be $n \ln 2$.
 - The FP rate simplifies to $0.5^{n \ln 2} = 0.619^n$
- A Bloom filter that uses just 8 bits per key to store an *arbitrary sized key* will have an FP rate of 2%

- Note: n = m/r is the storage (in bits) used per key.
- So, we can rewrite the FP equation as:

$$\left(1-e^{-kr/m}
ight)^k=\left(1-e^{-k/n}
ight)^k$$

- Optimal value of k can be shown to be $n \ln 2$.
 - The FP rate simplifies to $0.5^{n \ln 2} = 0.619^n$
- A Bloom filter that uses just 8 bits per key to store an *arbitrary sized key* will have an FP rate of 2%
- *Important:* Bloom filters can be used as a prefilter, e.g., if actual keys are in secondary storage (e.g., files or internet repositories)

Using arithmetic for substring matching

- **Problem:** Given strings T[1..n] and P[1..m], find occurrences of P in T in O(n + m) time.
- Idea: To simplify presentation, assume *P*, *T* range over [0-9]
 - Interpret *P*[1..*m*] as digits of a number

$$p = 10^{m-1}P[1] + 10^{m-2}P[2] + \cdots 10^{m-m}P[m]$$

- Similarly, interpret T[i..(i + m 1)] as the number t_i
- Note: *P* is a substring of *T* at *i* iff $p = t_i$
- To get t_{i+1} , shift T[i] out of t_i , and shift in T[i + m]:

$$t_{i+1} = (t_i - 10^{m-1}T[i]) \cdot 10 + T[i+m]$$

We have an O(n + m) algorithm. Almost: we still need to figure out how to operate on *m*-digit numbers in constant time!

Rabin-Karp Fingerprinting

Key Idea

- Instead of working with *m*-digit numbers,
- perform all arithmetic modulo a *random* prime number *q*,
- where $q > m^2$ fits within wordsize
- All observations made on previous slide still hold
 - Except that $p = t_i$ does not guarantee a match
 - Typically, we expect matches to be infrequent, so we can use O(m) exact-matching algorithm to confirm probable matches.

Carter-Wegman-Rabin-Karp Algorithm

Difficulty with Rabin-Karp: Need to generate random primes, which is not an efficient task.

New Idea: Make the radix random, as opposed to the modulus

• We still compute modulo a prime q, but it is not random.

Alternative interpretation: We treat *P* as a polynomial

$$p(x) = \sum_{i=1}^{m} P[m-i] \cdot x^{i}$$

and evaluate this polynomial at a randomly chosen value of x

Like any probabilistic algorithm we can increase correctness probability by repeating the algorithm with different randoms.

- Different prime numbers for Rabin-Karp
- Different values of *x* for CWRK

Carter-Wegman-Rabin-Karp Algorithm

$$p(x) = \sum_{i=1}^{m} P[m-i] \cdot x^{i}$$

Random choice does not imply high probability of being right.

• You need to explicitly establish correctness probability.
Carter-Wegman-Rabin-Karp Algorithm

$$p(x) = \sum_{i=1}^{m} P[m-i] \cdot x^{i}$$

Random choice does not imply high probability of being right.

• You need to explicitly establish correctness probability.

So, what is the likelihood of false matches?

• A false match occurs if $p_1(x) = p_2(x)$, i.e., $p_1(x) - p_2(x) = p_3(x) = 0$.

Carter-Wegman-Rabin-Karp Algorithm

$$p(x) = \sum_{i=1}^{m} P[m-i] \cdot x^{i}$$

Random choice does not imply high probability of being right.

• You need to explicitly establish correctness probability.

So, what is the likelihood of false matches?

- A false match occurs if $p_1(x) = p_2(x)$, i.e., $p_1(x) p_2(x) = p_3(x) = 0$.
- Arithmetic modulo prime defines a *field*, so an *m*th degree polynomial has m + 1 roots.

Carter-Wegman-Rabin-Karp Algorithm

$$p(x) = \sum_{i=1}^{m} P[m-i] \cdot x^{i}$$

Random choice does not imply high probability of being right.

• You need to explicitly establish correctness probability.

So, what is the likelihood of false matches?

- A false match occurs if $p_1(x) = p_2(x)$, i.e., $p_1(x) p_2(x) = p_3(x) = 0$.
- Arithmetic modulo prime defines a *field*, so an *m*th degree polynomial has m + 1 roots.
- Thus, (m + 1)/q of the q (recall q is the prime number used for performing modulo arithmetic) possible choices of x will result in a false match, i.e., probability of false positive = (m + 1)/q

Fermat's Theorem

 $a^{p-1} \equiv 1 \pmod{p}$

Fermat's Theorem

 $a^{p-1} \equiv 1 \pmod{p}$

• Recall $\{1a, 2a, 3a, \dots, (p-1)a\} \equiv \{1, 2, \dots, p-1\} \pmod{p}$

Fermat's Theorem

 $a^{p-1} \equiv 1 \pmod{p}$

- Recall $\{1a, 2a, 3a, \dots, (p-1)a\} \equiv \{1, 2, \dots, p-1\} \pmod{p}$
- Multiply all elements of both sides:

$$(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}$$

Fermat's Theorem

 $a^{p-1} \equiv 1 \pmod{p}$

- Recall $\{1a, 2a, 3a, \dots, (p-1)a\} \equiv \{1, 2, \dots, p-1\} \pmod{p}$
- Multiply all elements of both sides:

$$(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}$$

• Canceling out (p - 1)! from both sides, we have the theorem!

- Given a number *N*, we can use Fermat's theorem as a probabilistic test to see if it is prime:
 - if $a^{N-1} \not\equiv 1 \pmod{N}$ then N is not prime
 - Repeat with different values of *a* to gain more confidence

- Given a number *N*, we can use Fermat's theorem as a probabilistic test to see if it is prime:
 - if $a^{N-1} \not\equiv 1 \pmod{N}$ then N is not prime
 - Repeat with different values of *a* to gain more confidence
- *Question:* If *N* is *not* prime, what is the probability that the above procedure will fail?

- Given a number *N*, we can use Fermat's theorem as a probabilistic test to see if it is prime:
 - if $a^{N-1} \not\equiv 1 \pmod{N}$ then N is not prime
 - Repeat with different values of *a* to gain more confidence
- *Question:* If *N* is *not* prime, what is the probability that the above procedure will fail?
 - For Carmichael's numbers, the probability is 1 but ignore this for now, since these numbers are very rare.

- Given a number *N*, we can use Fermat's theorem as a probabilistic test to see if it is prime:
 - if $a^{N-1} \not\equiv 1 \pmod{N}$ then N is not prime
 - Repeat with different values of *a* to gain more confidence
- *Question:* If *N* is *not* prime, what is the probability that the above procedure will fail?
 - For Carmichael's numbers, the probability is 1 but ignore this for now, since these numbers are very rare.
 - For other numbers, we can show that the above procedure works with probability 0.5

Lemma

Lemma

If $a^{N-1} \not\equiv 1 \pmod{N}$ for a relatively prime to N, then it holds for at least half the choices of a < N.

• If there is no b such that $b^{N-1} \equiv 1 \pmod{N}$, then we have nothing to prove.

Lemma

- If there is no b such that $b^{N-1} \equiv 1 \pmod{N}$, then we have nothing to prove.
- Otherwise, pick one such *b*, and consider $c \equiv ab$.

Lemma

- If there is no b such that $b^{N-1} \equiv 1 \pmod{N}$, then we have nothing to prove.
- Otherwise, pick one such *b*, and consider $c \equiv ab$.
- Note $c^{N-1} \equiv a^{N-1}b^{N-1} \equiv a^{N-1} \neq 1$

Lemma

- If there is no b such that $b^{N-1} \equiv 1 \pmod{N}$, then we have nothing to prove.
- Otherwise, pick one such *b*, and consider $c \equiv ab$.
- Note $c^{N-1} \equiv a^{N-1}b^{N-1} \equiv a^{N-1} \neq 1$
- Thus, for every *b* for which Fermat's test is satisfied, there exists a *c* that does not satisfy it.
 - Moreover, since *a* is relatively prime to *N*, $ab \neq ab'$ unless $b \equiv b'$.

Lemma

- If there is no b such that $b^{N-1} \equiv 1 \pmod{N}$, then we have nothing to prove.
- Otherwise, pick one such *b*, and consider $c \equiv ab$.
- Note $c^{N-1} \equiv a^{N-1}b^{N-1} \equiv a^{N-1} \neq 1$
- Thus, for every *b* for which Fermat's test is satisfied, there exists a *c* that does not satisfy it.
 - Moreover, since *a* is relatively prime to *N*, $ab \neq ab'$ unless $b \equiv b'$.
- Thus, at least half of the numbers x < N relatively prime to N will fail the test.

- When Fermat's test returns "prime" *Pr*[*N* is not prime] < 0.5
- If Fermat's test is repeated for *k* choices of *a*, and returns "prime" in each case, $Pr[N \text{ is not prime}] < 0.5^k$
- In fact, 0.5 is an upper bound. Empirically, the probability has been much smaller.

- Empirically, on numbers less than 25 billion, the probability of Fermat's test failing to detect non-primes (with a = 2) is more like 0.00002
- This probability decreases even more for larger numbers.

Lagrange's Prime Number Theorem

For large *N*, primes occur approx. once every log *N* numbers.

Lagrange's Prime Number Theorem

For large N, primes occur approx. once every log N numbers.

- Generate a random number
- Probabilistically test it is prime, and if so output it
- Otherwise, repeat the whole process

Lagrange's Prime Number Theorem

For large N, primes occur approx. once every log N numbers.

- Generate a random number
- Probabilistically test it is prime, and if so output it
- Otherwise, repeat the whole process
- What is the complexity of this procedure?

Lagrange's Prime Number Theorem

For large N, primes occur approx. once every log N numbers.

- Generate a random number
- Probabilistically test it is prime, and if so output it
- Otherwise, repeat the whole process
- What is the complexity of this procedure?
 - $O(\log^2 N)$ multiplications on log N bit numbers
- If *N* is not prime, should we try *N* + 1, *N* + 2, . . . instead of generating a new random number?

Lagrange's Prime Number Theorem

For large N, primes occur approx. once every log N numbers.

- Generate a random number
- Probabilistically test it is prime, and if so output it
- Otherwise, repeat the whole process
- What is the complexity of this procedure?
 - $O(\log^2 N)$ multiplications on log N bit numbers
- If *N* is not prime, should we try N + 1, N + 2, ... instead of generating a new random number?
 - No, it is not easy to decide when to give up.

Rabin-Miller Test

- Works on Carmichael's numbers
- For prime number test, we consider only odd *N*, so $N 1 = 2^t u$ for some odd *u*
- Compute

$$a^{u}, a^{2u}, a^{4u}, \ldots, a^{2^{t}u} = a^{N-1}$$

- If a^{N-1} is not 1 then we know N is composite.
- Otherwise, we do a follow-up test on a^u , a^{2u} etc.
 - Let $a^{2^r u}$ be the first term that is equivalent to 1.
 - If r > 0 and $a^{2^{r-1}u} \not\equiv -1$ then N is composite
- This combined test detects non-primes with a probability of at least 0.75 for all numbers.