
Intro Probability Basics Taming distribution Probabilistic Algorithms

CSE 548: Algorithms
Randomized Algorithms

R. Sekar

1 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms

Example 1: Routing

What is the best way to route a packet from X to Y , esp. in high speed, high volume
networks

A: Pick the shortest path from X to Y
B: Send the packet to a random node Z , and let Z route it to Y (possibly using a
shortest path from Z to Y)

Valiant showed in 1981 that surprisingly, B works better!

Turing award recipient in 2010

2 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms

Example 1: Routing

What is the best way to route a packet from X to Y , esp. in high speed, high volume
networks

A: Pick the shortest path from X to Y
B: Send the packet to a random node Z , and let Z route it to Y (possibly using a
shortest path from Z to Y)

Valiant showed in 1981 that surprisingly, B works better!

Turing award recipient in 2010

3 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms

Example 2: Transmitting on shared network

What is the best way for n hosts to share a common a network?

A: Give each host a turn to transmit
B: Maintain a queue of hosts that have something to transmit, and use a FIFO
algorithm to grant access

C: Let every one try to transmit. If there is contention, use random choice to resove
it.

Which choice is better?

4 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms

Topics

1. Intro

2. Probability Basics

Discrete Probability

Coupon Collection

Birthday

Balls and Bins

3. Taming distribution

Quicksort

Caching

Hashing

Universal/Perfect hash

Closest pair

4. Probabilistic Algorithms

Bloom filter

Rabin-Karp

Prime testing

5 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms

Simplify, Decentralize, Ensure Fairness

Randomization can often:

Enable the use of a simpler algorithm

Cut down the amount of book-keeping

Support decentralized decision-making

Ensure fairness

Examples:

Media access protocol: Avoids need for coordination — important here, because
coordination needs connectivity!

Load balancing: Instead of maintaining centralized information about processor
loads, dispatch jobs randomly.

Congestion avoidance: Similar to load balancing
6 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Set Theory and Probability

A countable sample space S is a nonempty countable set.

An outcome ω is an element of S .

A probability function Pr : S −→ R is a total function such that

Pr[ω] ≥ 0 for all ω ∈ S , and∑
ω∈S Pr[ω] = 1

An event E is a subset of S . Its probability is given by:

Pr[E] =
∑
ω∈E

Pr[ω]

7 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Set Theory and Probability

A countable sample space S is a nonempty countable set.

An outcome ω is an element of S .

A probability function Pr : S −→ R is a total function such that

Pr[ω] ≥ 0 for all ω ∈ S , and∑
ω∈S Pr[ω] = 1

An event E is a subset of S . Its probability is given by:

Pr[E] =
∑
ω∈E

Pr[ω]

8 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality

Sum Rule: If E0, E1, . . . , En, . . . are pairwise disjoint events, then
Pr[

⋃
n∈N En] =

∑
n∈N Pr[En]

Complement Rule: Pr[A] = 1− Pr[A]

Difference Rule:
Pr[B− A] = Pr[B]− Pr[A ∩ B]

Inclusion–Exclusion:
Pr[A ∪ B] = Pr[A] + Pr[B]− Pr[A ∩ B]

Union Bound: Pr[A ∪ B] ≤ Pr[A] + Pr[B]

Monotonicity: A ⊆ B → Pr[A] ≤ Pr[B]

9 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality

Sum Rule: If E0, E1, . . . , En, . . . are pairwise disjoint events, then
Pr[

⋃
n∈N En] =

∑
n∈N Pr[En]

Complement Rule: Pr[A] = 1− Pr[A]

Difference Rule:
Pr[B− A] = Pr[B]− Pr[A ∩ B]

Inclusion–Exclusion:
Pr[A ∪ B] = Pr[A] + Pr[B]− Pr[A ∩ B]

Union Bound: Pr[A ∪ B] ≤ Pr[A] + Pr[B]

Monotonicity: A ⊆ B → Pr[A] ≤ Pr[B]

10 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality

Sum Rule: If E0, E1, . . . , En, . . . are pairwise disjoint events, then
Pr[

⋃
n∈N En] =

∑
n∈N Pr[En]

Complement Rule: Pr[A] = 1− Pr[A]

Difference Rule:
Pr[B− A] = Pr[B]− Pr[A ∩ B]

Inclusion–Exclusion:
Pr[A ∪ B] = Pr[A] + Pr[B]− Pr[A ∩ B]

Union Bound: Pr[A ∪ B] ≤ Pr[A] + Pr[B]

Monotonicity: A ⊆ B → Pr[A] ≤ Pr[B]

11 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality

Sum Rule: If E0, E1, . . . , En, . . . are pairwise disjoint events, then
Pr[

⋃
n∈N En] =

∑
n∈N Pr[En]

Complement Rule: Pr[A] = 1− Pr[A]

Difference Rule:
Pr[B− A] = Pr[B]− Pr[A ∩ B]

Inclusion–Exclusion:
Pr[A ∪ B] = Pr[A] + Pr[B]− Pr[A ∩ B]

Union Bound: Pr[A ∪ B] ≤ Pr[A] + Pr[B]

Monotonicity: A ⊆ B → Pr[A] ≤ Pr[B]

12 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality

Sum Rule: If E0, E1, . . . , En, . . . are pairwise disjoint events, then
Pr[

⋃
n∈N En] =

∑
n∈N Pr[En]

Complement Rule: Pr[A] = 1− Pr[A]

Difference Rule:
Pr[B− A] = Pr[B]− Pr[A ∩ B]

Inclusion–Exclusion:
Pr[A ∪ B] = Pr[A] + Pr[B]− Pr[A ∩ B]

Union Bound: Pr[A ∪ B] ≤ Pr[A] + Pr[B]

Monotonicity: A ⊆ B → Pr[A] ≤ Pr[B]
13 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Uniform Probability Spaces

A finite probability space S said to be uniform if Pr[ω] is the same for all ω. In such
spaces:

Pr[E] =
|E|
|S|

We often this assumption.

14 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Conditional Probability

Probability of an event under a condition

The condition limits consideration to a subset of outcomes

Consider this subset (rather than whole of S) as the space of all possible outcomes

Pr[X |Y] = Pr[X ∩ Y]
Pr[Y]

15 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Extending Probability Rules for Conditional Probability

Product Rule 2: Pr[E1 ∩ E2] = Pr[E1] · Pr[E2|E1]

Product Rule 3: Pr[E1 ∩ E2 ∩ E3] = Pr[E1] · Pr[E2|E1] · Pr[E3|E1 ∩ E2]

Bayes’ Rule: Pr[B|A] = Pr[A|B] · Pr[B]
Pr[A]

Total Probability Law: Pr[A] = Pr[A|E] · Pr[E] + Pr[A|E] · Pr[E]

Total Probability Law 2: If Ei are mutually disjoint and Pr[
⋃

Ei] = 1 then
Pr[A] =

∑
Pr[A|Ei] · Pr[Ei]

Inclusion-Exclusion: Pr[A ∪ B|C] = Pr[A|C] + Pr[B|C]− Pr[A ∩ B|C]

16 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Extending Probability Rules for Conditional Probability

Product Rule 2: Pr[E1 ∩ E2] = Pr[E1] · Pr[E2|E1]

Product Rule 3: Pr[E1 ∩ E2 ∩ E3] = Pr[E1] · Pr[E2|E1] · Pr[E3|E1 ∩ E2]

Bayes’ Rule: Pr[B|A] = Pr[A|B] · Pr[B]
Pr[A]

Total Probability Law: Pr[A] = Pr[A|E] · Pr[E] + Pr[A|E] · Pr[E]

Total Probability Law 2: If Ei are mutually disjoint and Pr[
⋃

Ei] = 1 then
Pr[A] =

∑
Pr[A|Ei] · Pr[Ei]

Inclusion-Exclusion: Pr[A ∪ B|C] = Pr[A|C] + Pr[B|C]− Pr[A ∩ B|C]

17 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Extending Probability Rules for Conditional Probability

Product Rule 2: Pr[E1 ∩ E2] = Pr[E1] · Pr[E2|E1]

Product Rule 3: Pr[E1 ∩ E2 ∩ E3] = Pr[E1] · Pr[E2|E1] · Pr[E3|E1 ∩ E2]

Bayes’ Rule: Pr[B|A] = Pr[A|B] · Pr[B]
Pr[A]

Total Probability Law: Pr[A] = Pr[A|E] · Pr[E] + Pr[A|E] · Pr[E]

Total Probability Law 2: If Ei are mutually disjoint and Pr[
⋃

Ei] = 1 then
Pr[A] =

∑
Pr[A|Ei] · Pr[Ei]

Inclusion-Exclusion: Pr[A ∪ B|C] = Pr[A|C] + Pr[B|C]− Pr[A ∩ B|C]

18 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Extending Probability Rules for Conditional Probability

Product Rule 2: Pr[E1 ∩ E2] = Pr[E1] · Pr[E2|E1]

Product Rule 3: Pr[E1 ∩ E2 ∩ E3] = Pr[E1] · Pr[E2|E1] · Pr[E3|E1 ∩ E2]

Bayes’ Rule: Pr[B|A] = Pr[A|B] · Pr[B]
Pr[A]

Total Probability Law: Pr[A] = Pr[A|E] · Pr[E] + Pr[A|E] · Pr[E]

Total Probability Law 2: If Ei are mutually disjoint and Pr[
⋃

Ei] = 1 then
Pr[A] =

∑
Pr[A|Ei] · Pr[Ei]

Inclusion-Exclusion: Pr[A ∪ B|C] = Pr[A|C] + Pr[B|C]− Pr[A ∩ B|C]

19 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Independence

An event A is independent of B iff the following (equivalent) conditions hold:

Pr[A|B] = Pr[A]

Pr[A ∩ B] = Pr[A] · Pr[B]
B is independent of A

Often, independence is an assumption.

Definition can be generalized to 3 (or n) events. Events E1, E2 and E3a are mutually
independent iff all of the following hold:

Pr[E1 ∩ E2] = Pr[E1] · Pr[E2]
Pr[E2 ∩ E3] = Pr[E2] · Pr[E3]
Pr[E1 ∩ E3] = Pr[E1] · Pr[E3]
Pr[E1 ∩ E2 ∩ E3] = Pr[E1] · Pr[E2] · Pr[E3]

20 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Coupon Collector Problem

Suppose that your favorite cereal has a coupon inside. There are n types of coupons,
but only one of them in each box. How many boxes will you have to buy before you
can expect to have all of the n types?

What is your guess?

Let us work out the expectation. Let us say that you have so far j − 1 types of
coupons, and are now looking to get to the jth type. Let Xj denote the number of
boxes you need to purchase before you get the j + 1th type.

21 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Coupon Collector Problem

Suppose that your favorite cereal has a coupon inside. There are n types of coupons,
but only one of them in each box. How many boxes will you have to buy before you
can expect to have all of the n types?

What is your guess?

Let us work out the expectation. Let us say that you have so far j − 1 types of
coupons, and are now looking to get to the jth type. Let Xj denote the number of
boxes you need to purchase before you get the j + 1th type.

22 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Coupon Collector Problem

Note E[Xj] = 1/pj , where pj is the probability of getting the jth coupon.

Note pj = (n− j)/n, so, E[Xj] = n/(n− j)

We have all n types when we finish the Xn−1 phase:

E[X] =
n−1∑
i=0

E[Xj] =
n−1∑
i=0

n/(n− j) = nH(n)

Note H(n) is the harmonic sum, and is bounded by ln n

Perhaps unintuitively, you need to buy ln n cereal boxes to obtain one useful coupon.

23 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Coupon Collector Problem

Note E[Xj] = 1/pj , where pj is the probability of getting the jth coupon.

Note pj = (n− j)/n, so, E[Xj] = n/(n− j)

We have all n types when we finish the Xn−1 phase:

E[X] =
n−1∑
i=0

E[Xj] =
n−1∑
i=0

n/(n− j) = nH(n)

Note H(n) is the harmonic sum, and is bounded by ln n

Perhaps unintuitively, you need to buy ln n cereal boxes to obtain one useful coupon.

24 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Coupon Collector Problem

Note E[Xj] = 1/pj , where pj is the probability of getting the jth coupon.

Note pj = (n− j)/n, so, E[Xj] = n/(n− j)

We have all n types when we finish the Xn−1 phase:

E[X] =
n−1∑
i=0

E[Xj] =
n−1∑
i=0

n/(n− j) = nH(n)

Note H(n) is the harmonic sum, and is bounded by ln n

Perhaps unintuitively, you need to buy ln n cereal boxes to obtain one useful coupon.

25 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Coupon Collector Problem

Note E[Xj] = 1/pj , where pj is the probability of getting the jth coupon.

Note pj = (n− j)/n, so, E[Xj] = n/(n− j)

We have all n types when we finish the Xn−1 phase:

E[X] =
n−1∑
i=0

E[Xj] =
n−1∑
i=0

n/(n− j) = nH(n)

Note H(n) is the harmonic sum, and is bounded by ln n

Perhaps unintuitively, you need to buy ln n cereal boxes to obtain one useful coupon.

26 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Birthday Paradox

What is the smallest size group where there are at least two people with the same
birthday?

365

183

61

25

27 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Birthday Problem

The probability that two students have different birthdays: 364
365

In a class of n, there are
(n
2

)
pairs of students to consider.

If we assume that whether one pair shares a birthday is independent of another, we can

simply multiply these probabilities

Pr(no two persons with same birthday) ≈
(
364
365

)(n2)
≈

(
364
365

)n2/2

For n = 44, this formula yields a probability of 7%

n = 23 is enough to have better than even chance of finding two with the same birthday.

28 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Birthday Problem: More Accurate Approach

What is the probability of finding two people with the same birthday in this class?

There are 365n possible sequences of birthdays for n people

We assume these are all equally likely

Number of sequences without repetition: 365 · 364 · · · (365− (n− 1))

Probability that no two of n persons have same birthday:
365
365

· 365− 1
365

· · · 365− (n− 1)
365

=

(
1− 0

365

)(
1− 1

365

)
· · ·

(
1− n− 1

365

)
Use the approximation (1− x) < e−x to derive an upper bound:

Pr(no two persons with same birthday) < e0 · e−
1
365 · e−

n−1
365 = e

−1
365

∑n−1
i=1 i = e

−n(n−1)
2∗365

For n = 44, this evaluates to 7.5%
29 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Birthday Paradox Vs Coupon Collection

Two sides of the same problem

Coupon Collection: What is the minumum number of samples needed to cover
every one of N values

Birthday problem: What is the maximum number of samples that can avoid
covering any value more than once?

So, if we want enough people to ensure that every day of the year is covered as a
birthday, we will need 365 ln 365 ≈ 2153 people!

Almost 100 times as many as needed for one duplicate birthday!

30 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Birthday Paradox Vs Coupon Collection

Two sides of the same problem

Coupon Collection: What is the minumum number of samples needed to cover
every one of N values

Birthday problem: What is the maximum number of samples that can avoid
covering any value more than once?

So, if we want enough people to ensure that every day of the year is covered as a
birthday, we will need 365 ln 365 ≈ 2153 people!

Almost 100 times as many as needed for one duplicate birthday!

31 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Balls and Bins

If m balls are thrown at random into n bins:
What should m be to have more than one ball in some bin?

Birthday problem

What should m be to have at least one ball per bin?

Coupon collection

What is the maximum number of balls in any bin?

Such problems arise in load-balancing, hashing, etc.

32 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Balls and Bins

If m balls are thrown at random into n bins:
What should m be to have more than one ball in some bin?

Birthday problem

What should m be to have at least one ball per bin?

Coupon collection

What is the maximum number of balls in any bin?

Such problems arise in load-balancing, hashing, etc.

33 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Balls and Bins

If m balls are thrown at random into n bins:
What should m be to have more than one ball in some bin?

Birthday problem

What should m be to have at least one ball per bin?

Coupon collection

What is the maximum number of balls in any bin?

Such problems arise in load-balancing, hashing, etc.

34 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Balls and Bins

If m balls are thrown at random into n bins:
What should m be to have more than one ball in some bin?

Birthday problem

What should m be to have at least one ball per bin?

Coupon collection

What is the maximum number of balls in any bin?

Such problems arise in load-balancing, hashing, etc.

35 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Balls and Bins

If m balls are thrown at random into n bins:
What should m be to have more than one ball in some bin?

Birthday problem

What should m be to have at least one ball per bin?

Coupon collection

What is the maximum number of balls in any bin?

Such problems arise in load-balancing, hashing, etc.

36 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Balls and Bins: Max Occupancy

Probability p1,k that the first bin receives at least k balls:

Choose k balls in
(m
k

)
ways

These k balls should fall into the first bin: prob. is (1/n)k

Other balls may fall anywhere, i.e., probability 1:1(
m
k

)(
1
n

)k

=
m · (m− 1) · · · (m− k + 1)

k!nk
≤ mk

k!nk

Let m = n, and use Sterling’s approx. k! ≈
√
2πk(k/e)k :

Pk =
n∑

i=1

pi,k ≤ n · 1
k!

≤ n ·
(e
k

)k

Some arithmetic simplification will show that Pk < 1/n when

k =
3 ln n
ln ln n

1This is actually an upper bound, as there can be some double counting. 37 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Balls and Bins: Max Occupancy

Probability p1,k that the first bin receives at least k balls:

Choose k balls in
(m
k

)
ways

These k balls should fall into the first bin: prob. is (1/n)k

Other balls may fall anywhere, i.e., probability 1:1(
m
k

)(
1
n

)k

=
m · (m− 1) · · · (m− k + 1)

k!nk
≤ mk

k!nk

Let m = n, and use Sterling’s approx. k! ≈
√
2πk(k/e)k :

Pk =
n∑

i=1

pi,k ≤ n · 1
k!

≤ n ·
(e
k

)k

Some arithmetic simplification will show that Pk < 1/n when

k =
3 ln n
ln ln n

1This is actually an upper bound, as there can be some double counting. 38 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Balls and Bins: Max Occupancy

Probability p1,k that the first bin receives at least k balls:

Choose k balls in
(m
k

)
ways

These k balls should fall into the first bin: prob. is (1/n)k

Other balls may fall anywhere, i.e., probability 1:1(
m
k

)(
1
n

)k

=
m · (m− 1) · · · (m− k + 1)

k!nk
≤ mk

k!nk

Let m = n, and use Sterling’s approx. k! ≈
√
2πk(k/e)k :

Pk =
n∑

i=1

pi,k ≤ n · 1
k!

≤ n ·
(e
k

)k

Some arithmetic simplification will show that Pk < 1/n when

k =
3 ln n
ln ln n

1This is actually an upper bound, as there can be some double counting. 39 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Balls and Bins: Summary of Results

m balls are thrown at random into n bins:

Min. one bin with expectation of 2 balls: m =
√
2n

No bin expected to be empty: m = n ln n

Expected number of empty bins: ne−m/n

Max. balls in any bin when m = n:

Θ(ln n/ ln ln n)

This is a probabilistic bound: chance of finding any bin with higher occupancy is 1/n or

less.

Note that the absolute maximum is n.

40 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Balls and Bins: Summary of Results

m balls are thrown at random into n bins:

Min. one bin with expectation of 2 balls: m =
√
2n

No bin expected to be empty: m = n ln n

Expected number of empty bins: ne−m/n

Max. balls in any bin when m = n:

Θ(ln n/ ln ln n)

This is a probabilistic bound: chance of finding any bin with higher occupancy is 1/n or

less.

Note that the absolute maximum is n.

41 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Balls and Bins: Summary of Results

m balls are thrown at random into n bins:

Min. one bin with expectation of 2 balls: m =
√
2n

No bin expected to be empty: m = n ln n

Expected number of empty bins: ne−m/n

Max. balls in any bin when m = n:

Θ(ln n/ ln ln n)

This is a probabilistic bound: chance of finding any bin with higher occupancy is 1/n or

less.

Note that the absolute maximum is n.

42 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Discrete Probability Coupon Collection Birthday Balls and Bins

Balls and Bins: Summary of Results

m balls are thrown at random into n bins:

Min. one bin with expectation of 2 balls: m =
√
2n

No bin expected to be empty: m = n ln n

Expected number of empty bins: ne−m/n

Max. balls in any bin when m = n:

Θ(ln n/ ln ln n)

This is a probabilistic bound: chance of finding any bin with higher occupancy is 1/n or

less.

Note that the absolute maximum is n.

43 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

RandomizedQuicksort

Picks a pivot at random. What is its complexity?

If pivot index is picked uniformly at random over the interval [l, h], then:

every array element is equally likely to be selected as the pivot

every partition is equally likely

thus, expected complexity of randomized quicksort is given by:

T (n) = n+
1
n

n−1∑
i=1

(T (i) + T (n− i))

Summary: Input need not be random

Expected O(n log n) performance comes from externally forced randomness in picking the

pivot

44 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

RandomizedQuicksort

Picks a pivot at random. What is its complexity?

If pivot index is picked uniformly at random over the interval [l, h], then:

every array element is equally likely to be selected as the pivot

every partition is equally likely

thus, expected complexity of randomized quicksort is given by:

T (n) = n+
1
n

n−1∑
i=1

(T (i) + T (n− i))

Summary: Input need not be random

Expected O(n log n) performance comes from externally forced randomness in picking the

pivot

45 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

RandomizedQuicksort

Picks a pivot at random. What is its complexity?

If pivot index is picked uniformly at random over the interval [l, h], then:

every array element is equally likely to be selected as the pivot

every partition is equally likely

thus, expected complexity of randomized quicksort is given by:

T (n) = n+
1
n

n−1∑
i=1

(T (i) + T (n− i))

Summary: Input need not be random

Expected O(n log n) performance comes from externally forced randomness in picking the

pivot

46 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Cache or Page Eviction

Caching algorithms have to evict entries when there is a miss

As do virtual memory systems on a page fault

Optimally, we should evict the “farthest in future” entry

But we can’t predict the future!

Result: many candidates for eviction. How can be avoid making bad (worst-case)
choices repeatedly, even if input behaves badly?

Approach: pick one of the candidates at random!

47 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Cache or Page Eviction

Caching algorithms have to evict entries when there is a miss

As do virtual memory systems on a page fault

Optimally, we should evict the “farthest in future” entry

But we can’t predict the future!

Result: many candidates for eviction. How can be avoid making bad (worst-case)
choices repeatedly, even if input behaves badly?

Approach: pick one of the candidates at random!

48 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Cache or Page Eviction

Caching algorithms have to evict entries when there is a miss

As do virtual memory systems on a page fault

Optimally, we should evict the “farthest in future” entry

But we can’t predict the future!

Result: many candidates for eviction. How can be avoid making bad (worst-case)
choices repeatedly, even if input behaves badly?

Approach: pick one of the candidates at random!

49 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Cache or Page Eviction

Caching algorithms have to evict entries when there is a miss

As do virtual memory systems on a page fault

Optimally, we should evict the “farthest in future” entry

But we can’t predict the future!

Result: many candidates for eviction. How can be avoid making bad (worst-case)
choices repeatedly, even if input behaves badly?

Approach: pick one of the candidates at random!

50 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Hash Tables

A data structure for implementing:

Dictionaries: Fast look up of a record based on a key.
Sets: Fast membership check.

Support expected O(1) time lookup, insert, and delete

Hash table entries may be:

fat: store a pair (key, object)
lean: store pointer to object containing key

Two main questions:

How to avoid O(n) worst case behavior?

How to ensure average case performance can be realized for arbitrary distribution of keys?

51 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Hash Tables

A data structure for implementing:

Dictionaries: Fast look up of a record based on a key.
Sets: Fast membership check.

Support expected O(1) time lookup, insert, and delete

Hash table entries may be:

fat: store a pair (key, object)
lean: store pointer to object containing key

Two main questions:

How to avoid O(n) worst case behavior?

How to ensure average case performance can be realized for arbitrary distribution of keys?

52 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Hash Tables

A data structure for implementing:

Dictionaries: Fast look up of a record based on a key.
Sets: Fast membership check.

Support expected O(1) time lookup, insert, and delete

Hash table entries may be:

fat: store a pair (key, object)
lean: store pointer to object containing key

Two main questions:

How to avoid O(n) worst case behavior?

How to ensure average case performance can be realized for arbitrary distribution of keys?

53 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Hash Tables

A data structure for implementing:

Dictionaries: Fast look up of a record based on a key.
Sets: Fast membership check.

Support expected O(1) time lookup, insert, and delete

Hash table entries may be:

fat: store a pair (key, object)
lean: store pointer to object containing key

Two main questions:

How to avoid O(n) worst case behavior?

How to ensure average case performance can be realized for arbitrary distribution of keys?

54 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Hash Table Implementation

Direct access: A fancy name for arrays. Not applicable in most cases where the
universe U of keys is very large.

Index based on hash: Given a hash function h (fixed for the entire table) and a key x ,
use h(x) to index into an array A.
Use A[h(x) mod s], where s is the size of array
Sometimes, we fold the mod operation into h.

Array elements typically called buckets
Collisions bound to occur since s ≪ |U|
Either h(x) = h(y), or

h(x) ̸= h(y) but h(x) ≡ h(y) (mod s)

55 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Hash Table Implementation

Direct access: A fancy name for arrays. Not applicable in most cases where the
universe U of keys is very large.

Index based on hash: Given a hash function h (fixed for the entire table) and a key x ,
use h(x) to index into an array A.

Use A[h(x) mod s], where s is the size of array
Sometimes, we fold the mod operation into h.

Array elements typically called buckets
Collisions bound to occur since s ≪ |U|
Either h(x) = h(y), or

h(x) ̸= h(y) but h(x) ≡ h(y) (mod s)

56 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Hash Table Implementation

Direct access: A fancy name for arrays. Not applicable in most cases where the
universe U of keys is very large.

Index based on hash: Given a hash function h (fixed for the entire table) and a key x ,
use h(x) to index into an array A.
Use A[h(x) mod s], where s is the size of array
Sometimes, we fold the mod operation into h.

Array elements typically called buckets
Collisions bound to occur since s ≪ |U|
Either h(x) = h(y), or

h(x) ̸= h(y) but h(x) ≡ h(y) (mod s)

57 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Hash Table Implementation

Direct access: A fancy name for arrays. Not applicable in most cases where the
universe U of keys is very large.

Index based on hash: Given a hash function h (fixed for the entire table) and a key x ,
use h(x) to index into an array A.
Use A[h(x) mod s], where s is the size of array
Sometimes, we fold the mod operation into h.

Array elements typically called buckets

Collisions bound to occur since s ≪ |U|
Either h(x) = h(y), or

h(x) ̸= h(y) but h(x) ≡ h(y) (mod s)

58 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Hash Table Implementation

Direct access: A fancy name for arrays. Not applicable in most cases where the
universe U of keys is very large.

Index based on hash: Given a hash function h (fixed for the entire table) and a key x ,
use h(x) to index into an array A.
Use A[h(x) mod s], where s is the size of array
Sometimes, we fold the mod operation into h.

Array elements typically called buckets
Collisions bound to occur since s ≪ |U|
Either h(x) = h(y), or

h(x) ̸= h(y) but h(x) ≡ h(y) (mod s)

59 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Collisions in Hash tables

Load factor α: Ratio of number of keys to number of buckets

If keys were random:

What is the max α if we want ≤ 1 collisions in the table?

If α = 1, what is the maximum number of collisions to expect?

Both questions can be answered from balls-and-bins results: 1/
√
n, and

O(ln n/ ln ln n)

Real world keys are not random. Your hash table implementation needs to
achieve its performance goals independent of this distribution.

60 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Collisions in Hash tables

Load factor α: Ratio of number of keys to number of buckets

If keys were random:

What is the max α if we want ≤ 1 collisions in the table?

If α = 1, what is the maximum number of collisions to expect?

Both questions can be answered from balls-and-bins results: 1/
√
n, and

O(ln n/ ln ln n)

Real world keys are not random. Your hash table implementation needs to
achieve its performance goals independent of this distribution.

61 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Collisions in Hash tables

Load factor α: Ratio of number of keys to number of buckets

If keys were random:

What is the max α if we want ≤ 1 collisions in the table?

If α = 1, what is the maximum number of collisions to expect?

Both questions can be answered from balls-and-bins results: 1/
√
n, and

O(ln n/ ln ln n)

Real world keys are not random. Your hash table implementation needs to
achieve its performance goals independent of this distribution.

62 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Chained Hash Table

Each bucket is a linked list.

Any key that hashes to a bucket is inserted into that bucket.

What is the average search time, as a function of α?

It is 1+ α if:
you assume that the distribution of lookups is independent of the table entries, OR,
the chains are not too long (i.e., α is small)

63 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Chained Hash Table

Each bucket is a linked list.

Any key that hashes to a bucket is inserted into that bucket.

What is the average search time, as a function of α?
It is 1+ α if:
you assume that the distribution of lookups is independent of the table entries, OR,
the chains are not too long (i.e., α is small)

64 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Open addressing

If there is a collision, probe other empty slots

Linear probing: If h(x) is occupied, try h(x) + i for i = 1, 2, ...
Binary probing: Try h(x)⊕ i, where ⊕ stands for exor.
Quadratic probing: For ith probe, use h(x) + c1i + c2i2

Criteria for secondary probes

Completeness: Should cycle through all possible slots in table
Clustering: Probe sequences shouldn’t coalesce to long chains
Locality: Preserve locality; typically conflicts with clustering.

Average search time can be O(1/(1− α)2) for linear probing, and O(1/(1− α)) for
quadratic probing.

65 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Open addressing

If there is a collision, probe other empty slots

Linear probing: If h(x) is occupied, try h(x) + i for i = 1, 2, ...
Binary probing: Try h(x)⊕ i, where ⊕ stands for exor.
Quadratic probing: For ith probe, use h(x) + c1i + c2i2

Criteria for secondary probes

Completeness: Should cycle through all possible slots in table
Clustering: Probe sequences shouldn’t coalesce to long chains
Locality: Preserve locality; typically conflicts with clustering.

Average search time can be O(1/(1− α)2) for linear probing, and O(1/(1− α)) for
quadratic probing.

66 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Open addressing

If there is a collision, probe other empty slots

Linear probing: If h(x) is occupied, try h(x) + i for i = 1, 2, ...
Binary probing: Try h(x)⊕ i, where ⊕ stands for exor.
Quadratic probing: For ith probe, use h(x) + c1i + c2i2

Criteria for secondary probes

Completeness: Should cycle through all possible slots in table
Clustering: Probe sequences shouldn’t coalesce to long chains
Locality: Preserve locality; typically conflicts with clustering.

Average search time can be O(1/(1− α)2) for linear probing, and O(1/(1− α)) for
quadratic probing.

67 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Chaining Vs Open Addressing

Chaining leads to fewer collisions

Clustering causes more collisions w/ open addressing for same α

However, for lean tables, open addressing uses half the space of chaining, so you can use a

much lower α for same space usage.

Chaining is more tolerant of “lumpy” hash functions

For instance, if h(x) and h(x + 1) are often very close, open hashing can experience longer

chains when inputs are closely spaced.

Hash functions for open-hashing having to be selected very carefully

Linked lists are not cache-friendly

Can be mitigated w/ arrays for buckets instead of linked lists

Not all quadratic probes cover all slots (but some can)

68 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Chaining Vs Open Addressing

Chaining leads to fewer collisions

Clustering causes more collisions w/ open addressing for same α

However, for lean tables, open addressing uses half the space of chaining, so you can use a

much lower α for same space usage.

Chaining is more tolerant of “lumpy” hash functions

For instance, if h(x) and h(x + 1) are often very close, open hashing can experience longer

chains when inputs are closely spaced.

Hash functions for open-hashing having to be selected very carefully

Linked lists are not cache-friendly

Can be mitigated w/ arrays for buckets instead of linked lists

Not all quadratic probes cover all slots (but some can)

69 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Chaining Vs Open Addressing

Chaining leads to fewer collisions

Clustering causes more collisions w/ open addressing for same α

However, for lean tables, open addressing uses half the space of chaining, so you can use a

much lower α for same space usage.

Chaining is more tolerant of “lumpy” hash functions

For instance, if h(x) and h(x + 1) are often very close, open hashing can experience longer

chains when inputs are closely spaced.

Hash functions for open-hashing having to be selected very carefully

Linked lists are not cache-friendly

Can be mitigated w/ arrays for buckets instead of linked lists

Not all quadratic probes cover all slots (but some can)

70 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Chaining Vs Open Addressing

Chaining leads to fewer collisions

Clustering causes more collisions w/ open addressing for same α

However, for lean tables, open addressing uses half the space of chaining, so you can use a

much lower α for same space usage.

Chaining is more tolerant of “lumpy” hash functions

For instance, if h(x) and h(x + 1) are often very close, open hashing can experience longer

chains when inputs are closely spaced.

Hash functions for open-hashing having to be selected very carefully

Linked lists are not cache-friendly

Can be mitigated w/ arrays for buckets instead of linked lists

Not all quadratic probes cover all slots (but some can)
71 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Resizing

Hard to predict the right size for hash table in advance

Ideally, 0.5 ≤ α ≤ 1, so we need an accurate estimate

It is stupid to ask programmers to guess the size

Without a good basis, only terrible guesses are possible

Right solution: Resize tables automatically.

When α becomes too large (or small), rehash into a bigger (or smaller) table

Rehashing is O(n), but if you increase size by a factor, then amortized cost is still O(1)

Exercise: How to ensure amortized O(1) cost when you resize up as well as down?

72 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Resizing

Hard to predict the right size for hash table in advance

Ideally, 0.5 ≤ α ≤ 1, so we need an accurate estimate

It is stupid to ask programmers to guess the size

Without a good basis, only terrible guesses are possible

Right solution: Resize tables automatically.

When α becomes too large (or small), rehash into a bigger (or smaller) table

Rehashing is O(n), but if you increase size by a factor, then amortized cost is still O(1)

Exercise: How to ensure amortized O(1) cost when you resize up as well as down?

73 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Resizing

Hard to predict the right size for hash table in advance

Ideally, 0.5 ≤ α ≤ 1, so we need an accurate estimate

It is stupid to ask programmers to guess the size

Without a good basis, only terrible guesses are possible

Right solution: Resize tables automatically.

When α becomes too large (or small), rehash into a bigger (or smaller) table

Rehashing is O(n), but if you increase size by a factor, then amortized cost is still O(1)

Exercise: How to ensure amortized O(1) cost when you resize up as well as down?

74 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Resizing

Hard to predict the right size for hash table in advance

Ideally, 0.5 ≤ α ≤ 1, so we need an accurate estimate

It is stupid to ask programmers to guess the size

Without a good basis, only terrible guesses are possible

Right solution: Resize tables automatically.

When α becomes too large (or small), rehash into a bigger (or smaller) table

Rehashing is O(n), but if you increase size by a factor, then amortized cost is still O(1)

Exercise: How to ensure amortized O(1) cost when you resize up as well as down?

75 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Resizing

Hard to predict the right size for hash table in advance

Ideally, 0.5 ≤ α ≤ 1, so we need an accurate estimate

It is stupid to ask programmers to guess the size

Without a good basis, only terrible guesses are possible

Right solution: Resize tables automatically.

When α becomes too large (or small), rehash into a bigger (or smaller) table

Rehashing is O(n), but if you increase size by a factor, then amortized cost is still O(1)

Exercise: How to ensure amortized O(1) cost when you resize up as well as down?

76 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Average Vs Worst Case

Worst case search time is O(n) for a table of size n

With hash tables, it is all about avoiding the worst case, and achieving the average case

Two main chalenges:

Input is not random, e.g., names or IP addresses.

Even when input is random, h may cause “lumping,” or non-uniform dispersal of U to the

set {1, . . . , n}

Two main techniques

Universal hashing
Perfect hashing

77 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Average Vs Worst Case

Worst case search time is O(n) for a table of size n

With hash tables, it is all about avoiding the worst case, and achieving the average case

Two main chalenges:

Input is not random, e.g., names or IP addresses.

Even when input is random, h may cause “lumping,” or non-uniform dispersal of U to the

set {1, . . . , n}

Two main techniques

Universal hashing
Perfect hashing

78 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Average Vs Worst Case

Worst case search time is O(n) for a table of size n

With hash tables, it is all about avoiding the worst case, and achieving the average case

Two main chalenges:

Input is not random, e.g., names or IP addresses.

Even when input is random, h may cause “lumping,” or non-uniform dispersal of U to the

set {1, . . . , n}

Two main techniques

Universal hashing
Perfect hashing

79 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Average Vs Worst Case

Worst case search time is O(n) for a table of size n

With hash tables, it is all about avoiding the worst case, and achieving the average case

Two main chalenges:

Input is not random, e.g., names or IP addresses.

Even when input is random, h may cause “lumping,” or non-uniform dispersal of U to the

set {1, . . . , n}

Two main techniques

Universal hashing
Perfect hashing

80 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Universal Hashing
No single hash function can be good on all inputs

Any function U → {1, . . . , n} must map |U|/n inputs to same value!

Note: |U| can be much, much larger than n.

Definition
A family of hash functionsH is universal if

Prh∈H[h(x) = h(y)] =
1
n

for all x ̸= y

Meaning: If we pick h at random from the family H, then, probability of collisions is
the same for any two elements.

Contrast with non-universal hash functions such as

h(x) = ax mod n, (a is chosen at random)

Note y and y + kn collide with a probability of 1 for every a.

81 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Universal Hashing
No single hash function can be good on all inputs

Any function U → {1, . . . , n} must map |U|/n inputs to same value!

Note: |U| can be much, much larger than n.

Definition
A family of hash functionsH is universal if

Prh∈H[h(x) = h(y)] =
1
n

for all x ̸= y

Meaning: If we pick h at random from the family H, then, probability of collisions is
the same for any two elements.

Contrast with non-universal hash functions such as

h(x) = ax mod n, (a is chosen at random)

Note y and y + kn collide with a probability of 1 for every a.

82 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Universal Hashing
No single hash function can be good on all inputs

Any function U → {1, . . . , n} must map |U|/n inputs to same value!

Note: |U| can be much, much larger than n.

Definition
A family of hash functionsH is universal if

Prh∈H[h(x) = h(y)] =
1
n

for all x ̸= y

Meaning: If we pick h at random from the family H, then, probability of collisions is
the same for any two elements.

Contrast with non-universal hash functions such as

h(x) = ax mod n, (a is chosen at random)

Note y and y + kn collide with a probability of 1 for every a. 83 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Universal Hashing Using Multiplication

Observation (Multiplication Modulo Prime)

If p is a prime and 0 < a < p

{1a, 2a, 3a, . . . , (p− 1)a} = {1, 2, . . . , p− 1} (mod p)

∀a ∃b ab ≡ 1 (mod p)

Prime multiplicative hashing

Let the key x ∈ U , p > |U| be prime, and 0< r<p be random. Then

h(x) = (rx mod p) mod n

is universal.

Prove: Pr[h(x) = h(y)] = 1
n , for x ̸= y

84 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Universal Hashing Using Multiplication

Observation (Multiplication Modulo Prime)

If p is a prime and 0 < a < p

{1a, 2a, 3a, . . . , (p− 1)a} = {1, 2, . . . , p− 1} (mod p)

∀a ∃b ab ≡ 1 (mod p)

Prime multiplicative hashing

Let the key x ∈ U , p > |U| be prime, and 0< r<p be random. Then

h(x) = (rx mod p) mod n

is universal.

Prove: Pr[h(x) = h(y)] = 1
n , for x ̸= y

85 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Universality of prime multiplicative hashing
Need to show Pr[h(x) = h(y)] = 1

n , for x ̸= y

h(x) = h(y) means (rx mod p) mod n = (ry mod p) mod n

Note a mod n = b mod n means a = b + kn for some integer k. Using this, we
eliminatemod n from above equation to get:

rx mod p = kn+ ry mod p, where k ≤ ⌊p/n⌋
rx ≡ kn+ ry (mod p)

r(x − y) ≡ kn (mod p)

r ≡ kn(x − y)−1 (mod p)

So, x, y collide if r = n(x−y)−1, 2n(x−y)−1, . . . , ⌊p/n⌋n(x−y)−1

In other words, x and y collide for p/n out of p possible values of r , i.e., collision
probability is 1/n 86 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Binary multiplicative hashing

Faster: avoids need for computing modulo prime

When |U| < 2w , n = 2l and a an odd random number

h(x) =
⌊
ax mod 2w

2w−l

⌋
Can be implemented efficiently if w is the wordsize:

(a*x) >> (WORDSIZE-HASHBITS)

Scheme is near-universal: collision probability is O(1)/2l

87 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Binary multiplicative hashing

Faster: avoids need for computing modulo prime

When |U| < 2w , n = 2l and a an odd random number

h(x) =
⌊
ax mod 2w

2w−l

⌋

Can be implemented efficiently if w is the wordsize:
(a*x) >> (WORDSIZE-HASHBITS)

Scheme is near-universal: collision probability is O(1)/2l

88 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Binary multiplicative hashing

Faster: avoids need for computing modulo prime

When |U| < 2w , n = 2l and a an odd random number

h(x) =
⌊
ax mod 2w

2w−l

⌋
Can be implemented efficiently if w is the wordsize:

(a*x) >> (WORDSIZE-HASHBITS)

Scheme is near-universal: collision probability is O(1)/2l

89 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Binary multiplicative hashing

Faster: avoids need for computing modulo prime

When |U| < 2w , n = 2l and a an odd random number

h(x) =
⌊
ax mod 2w

2w−l

⌋
Can be implemented efficiently if w is the wordsize:

(a*x) >> (WORDSIZE-HASHBITS)

Scheme is near-universal: collision probability is O(1)/2l

90 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Prime Multiplicative Hash for Vectors

Let p be a prime number, and the key x be a vector [x1, . . . , xk] where 0 ≤ xi < p. Let

h(x) =
k∑

i=1

rixi (mod p)

If 0 < ri < p are chosen at random, then h is universal.

Strings can also be handled like vectors, or alternatively, as a polynomial evaluated
at a random point a, with p a prime:

h(x) =
l∑

i=0

xiai mod p

91 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Prime Multiplicative Hash for Vectors

Let p be a prime number, and the key x be a vector [x1, . . . , xk] where 0 ≤ xi < p. Let

h(x) =
k∑

i=1

rixi (mod p)

If 0 < ri < p are chosen at random, then h is universal.

Strings can also be handled like vectors, or alternatively, as a polynomial evaluated
at a random point a, with p a prime:

h(x) =
l∑

i=0

xiai mod p

92 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Universality of multiplicative hashing for vectors
Since x ̸= y , there exists an i such that xi ̸= yi

When collision occurs,
∑k

j=1 rjxj =
∑k

j=1 rjyj (mod p)

Rearranging,
∑

j ̸=i rj(xj − yj) = ri(yi − xi) (mod p)

The lhs evaluates to some c, and we need to estimate the probability that rhs
evaluates to this c

Using multiplicative inverse property, we see that ri = c(yi − xi)−1 (mod p).

Since yi, xi < p, it is easy to see from this equation that the collision-causing value
of ri is distinct for distinct yi .

Viewed another way, exactly one of p choices of ri would cause a collision between
xi and yi , i.e., Prh[h(x) = h(y)] = 1/p

93 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Universality of multiplicative hashing for vectors
Since x ̸= y , there exists an i such that xi ̸= yi

When collision occurs,
∑k

j=1 rjxj =
∑k

j=1 rjyj (mod p)

Rearranging,
∑

j ̸=i rj(xj − yj) = ri(yi − xi) (mod p)

The lhs evaluates to some c, and we need to estimate the probability that rhs
evaluates to this c

Using multiplicative inverse property, we see that ri = c(yi − xi)−1 (mod p).

Since yi, xi < p, it is easy to see from this equation that the collision-causing value
of ri is distinct for distinct yi .

Viewed another way, exactly one of p choices of ri would cause a collision between
xi and yi , i.e., Prh[h(x) = h(y)] = 1/p

94 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Universality of multiplicative hashing for vectors
Since x ̸= y , there exists an i such that xi ̸= yi

When collision occurs,
∑k

j=1 rjxj =
∑k

j=1 rjyj (mod p)

Rearranging,
∑

j ̸=i rj(xj − yj) = ri(yi − xi) (mod p)

The lhs evaluates to some c, and we need to estimate the probability that rhs
evaluates to this c

Using multiplicative inverse property, we see that ri = c(yi − xi)−1 (mod p).

Since yi, xi < p, it is easy to see from this equation that the collision-causing value
of ri is distinct for distinct yi .

Viewed another way, exactly one of p choices of ri would cause a collision between
xi and yi , i.e., Prh[h(x) = h(y)] = 1/p

95 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Universality of multiplicative hashing for vectors
Since x ̸= y , there exists an i such that xi ̸= yi

When collision occurs,
∑k

j=1 rjxj =
∑k

j=1 rjyj (mod p)

Rearranging,
∑

j ̸=i rj(xj − yj) = ri(yi − xi) (mod p)

The lhs evaluates to some c, and we need to estimate the probability that rhs
evaluates to this c

Using multiplicative inverse property, we see that ri = c(yi − xi)−1 (mod p).

Since yi, xi < p, it is easy to see from this equation that the collision-causing value
of ri is distinct for distinct yi .

Viewed another way, exactly one of p choices of ri would cause a collision between
xi and yi , i.e., Prh[h(x) = h(y)] = 1/p

96 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Universality of multiplicative hashing for vectors
Since x ̸= y , there exists an i such that xi ̸= yi

When collision occurs,
∑k

j=1 rjxj =
∑k

j=1 rjyj (mod p)

Rearranging,
∑

j ̸=i rj(xj − yj) = ri(yi − xi) (mod p)

The lhs evaluates to some c, and we need to estimate the probability that rhs
evaluates to this c

Using multiplicative inverse property, we see that ri = c(yi − xi)−1 (mod p).

Since yi, xi < p, it is easy to see from this equation that the collision-causing value
of ri is distinct for distinct yi .

Viewed another way, exactly one of p choices of ri would cause a collision between
xi and yi , i.e., Prh[h(x) = h(y)] = 1/p

97 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Universality of multiplicative hashing for vectors
Since x ̸= y , there exists an i such that xi ̸= yi

When collision occurs,
∑k

j=1 rjxj =
∑k

j=1 rjyj (mod p)

Rearranging,
∑

j ̸=i rj(xj − yj) = ri(yi − xi) (mod p)

The lhs evaluates to some c, and we need to estimate the probability that rhs
evaluates to this c

Using multiplicative inverse property, we see that ri = c(yi − xi)−1 (mod p).

Since yi, xi < p, it is easy to see from this equation that the collision-causing value
of ri is distinct for distinct yi .

Viewed another way, exactly one of p choices of ri would cause a collision between
xi and yi , i.e., Prh[h(x) = h(y)] = 1/p

98 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Universality of multiplicative hashing for vectors
Since x ̸= y , there exists an i such that xi ̸= yi

When collision occurs,
∑k

j=1 rjxj =
∑k

j=1 rjyj (mod p)

Rearranging,
∑

j ̸=i rj(xj − yj) = ri(yi − xi) (mod p)

The lhs evaluates to some c, and we need to estimate the probability that rhs
evaluates to this c

Using multiplicative inverse property, we see that ri = c(yi − xi)−1 (mod p).

Since yi, xi < p, it is easy to see from this equation that the collision-causing value
of ri is distinct for distinct yi .

Viewed another way, exactly one of p choices of ri would cause a collision between
xi and yi , i.e., Prh[h(x) = h(y)] = 1/p

99 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Perfect hashing

Static: Pick a hash function (or set of functions) that avoids collisions for a given set of
keys

Dynamic: Keys need not be static.

Approach 1: Use O(n2) storage. Expected collision on n items is 0. But too wasteful
of storage.
Don’t forget: more memory usually means less performance due to cache effects.

Approach 2: Use a secondary hash table for each bucket of size n2i , where ni is the
number of elements in the bucket.
Uses only O(n) storage, if h is universal

100 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Perfect hashing

Static: Pick a hash function (or set of functions) that avoids collisions for a given set of
keys

Dynamic: Keys need not be static.

Approach 1: Use O(n2) storage. Expected collision on n items is 0. But too wasteful
of storage.
Don’t forget: more memory usually means less performance due to cache effects.

Approach 2: Use a secondary hash table for each bucket of size n2i , where ni is the
number of elements in the bucket.
Uses only O(n) storage, if h is universal

101 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Perfect hashing

Static: Pick a hash function (or set of functions) that avoids collisions for a given set of
keys

Dynamic: Keys need not be static.

Approach 1: Use O(n2) storage. Expected collision on n items is 0. But too wasteful
of storage.
Don’t forget: more memory usually means less performance due to cache effects.

Approach 2: Use a secondary hash table for each bucket of size n2i , where ni is the
number of elements in the bucket.
Uses only O(n) storage, if h is universal

102 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Hashing Summary

Excellent average case performance

Pointer chasing is expensive on modern hardware, so improvement from O(log n) of

binary trees to expected O(1) for hash tables is significant.

But all benefits will be reversed if collisions occur too often

Universal hashing is a way to ensure expected average case even when input is not random.

Perfect hashing can provide efficient performance even in the worst case, but the
benefits are likely small in practice.

103 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Hashing Summary

Excellent average case performance

Pointer chasing is expensive on modern hardware, so improvement from O(log n) of

binary trees to expected O(1) for hash tables is significant.

But all benefits will be reversed if collisions occur too often

Universal hashing is a way to ensure expected average case even when input is not random.

Perfect hashing can provide efficient performance even in the worst case, but the
benefits are likely small in practice.

104 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Finding closest pair of points
Problem: Given a set of n points in a d-dimensional space, identify the two that have
the smallest Euclidean distance between them.

Applications: A central problem in graphics, vision, air-traffic control, navigation,
molecular modeling, and so on.

Images from Wikipedia Commons

105 / 169

http://commons.wikimedia.org/wiki/File:Closest_pair_of_points.svg#mediaviewer/File:Closest_pair_of_points.svg

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: Key Ideas

Divide the plane into small squares, hash points into them

Pairwise comparisons can be limited to points within the squares very closeby

Process the points in some random order

Maintain min. distance δ among points processed so far.

Update δ as more points are processed

At any point, the “small squares” have a size of δ/2

At most one point per square (or else points are closer than δ)
Points closer than δ will at most be two squares from each other
Only constant number of points to consider

Requires rehashing all processed points when δ is updated.

106 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: Key Ideas

Divide the plane into small squares, hash points into them

Pairwise comparisons can be limited to points within the squares very closeby

Process the points in some random order

Maintain min. distance δ among points processed so far.

Update δ as more points are processed

At any point, the “small squares” have a size of δ/2

At most one point per square (or else points are closer than δ)
Points closer than δ will at most be two squares from each other
Only constant number of points to consider

Requires rehashing all processed points when δ is updated.

107 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: Key Ideas

Divide the plane into small squares, hash points into them

Pairwise comparisons can be limited to points within the squares very closeby

Process the points in some random order

Maintain min. distance δ among points processed so far.

Update δ as more points are processed

At any point, the “small squares” have a size of δ/2

At most one point per square (or else points are closer than δ)
Points closer than δ will at most be two squares from each other
Only constant number of points to consider

Requires rehashing all processed points when δ is updated.

108 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: Analysis

Correctness is relatively clear, so we focus on performance

Two main concerns

Storage: # of squares is 1/δ2, which can be very large
Use a dictionary (hash table) that stores up to n points, and maps (2xi/δ, 2yi/δ) to

{1, ..., n}
To process a point (xj, yj)
look up the dictionary at (xj/δ ± 2, yj/δ ± 2)
insert if it is not closer than δ

Rehashing points: If closer than δ — very expensive.

Total runtime can all be “charged” to insert operations,

incl. those performed during rehashing

so we will focus on estimating inserts.

109 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: Analysis

Correctness is relatively clear, so we focus on performance

Two main concerns
Storage: # of squares is 1/δ2, which can be very large

Use a dictionary (hash table) that stores up to n points, and maps (2xi/δ, 2yi/δ) to

{1, ..., n}
To process a point (xj, yj)
look up the dictionary at (xj/δ ± 2, yj/δ ± 2)
insert if it is not closer than δ

Rehashing points: If closer than δ — very expensive.

Total runtime can all be “charged” to insert operations,

incl. those performed during rehashing

so we will focus on estimating inserts.

110 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: Analysis

Correctness is relatively clear, so we focus on performance

Two main concerns
Storage: # of squares is 1/δ2, which can be very large

Use a dictionary (hash table) that stores up to n points, and maps (2xi/δ, 2yi/δ) to

{1, ..., n}

To process a point (xj, yj)
look up the dictionary at (xj/δ ± 2, yj/δ ± 2)
insert if it is not closer than δ

Rehashing points: If closer than δ — very expensive.

Total runtime can all be “charged” to insert operations,

incl. those performed during rehashing

so we will focus on estimating inserts.

111 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: Analysis

Correctness is relatively clear, so we focus on performance

Two main concerns
Storage: # of squares is 1/δ2, which can be very large

Use a dictionary (hash table) that stores up to n points, and maps (2xi/δ, 2yi/δ) to

{1, ..., n}
To process a point (xj, yj)
look up the dictionary at (xj/δ ± 2, yj/δ ± 2)
insert if it is not closer than δ

Rehashing points: If closer than δ — very expensive.

Total runtime can all be “charged” to insert operations,

incl. those performed during rehashing

so we will focus on estimating inserts.

112 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: Analysis

Correctness is relatively clear, so we focus on performance

Two main concerns
Storage: # of squares is 1/δ2, which can be very large

Use a dictionary (hash table) that stores up to n points, and maps (2xi/δ, 2yi/δ) to

{1, ..., n}
To process a point (xj, yj)
look up the dictionary at (xj/δ ± 2, yj/δ ± 2)
insert if it is not closer than δ

Rehashing points: If closer than δ — very expensive.

Total runtime can all be “charged” to insert operations,

incl. those performed during rehashing

so we will focus on estimating inserts.

113 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: Analysis

Correctness is relatively clear, so we focus on performance

Two main concerns
Storage: # of squares is 1/δ2, which can be very large

Use a dictionary (hash table) that stores up to n points, and maps (2xi/δ, 2yi/δ) to

{1, ..., n}
To process a point (xj, yj)
look up the dictionary at (xj/δ ± 2, yj/δ ± 2)
insert if it is not closer than δ

Rehashing points: If closer than δ — very expensive.

Total runtime can all be “charged” to insert operations,

incl. those performed during rehashing

so we will focus on estimating inserts. 114 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: # of Inserts

Theorem
If random variable Xi denotes the likelihood of needing to rehash after processing k

points, then
Xi ≤

2
i

Let p1, p2, . . . , pi be the points processed so far, and p and q be the closest among
these

Rehashing is needed while processing pi if pi = p or pi = q

Since points are processed in random order, there is a 2/i probability that pi is one
of p or q

115 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: # of Inserts

Theorem
If random variable Xi denotes the likelihood of needing to rehash after processing k

points, then
Xi ≤

2
i

Let p1, p2, . . . , pi be the points processed so far, and p and q be the closest among
these

Rehashing is needed while processing pi if pi = p or pi = q

Since points are processed in random order, there is a 2/i probability that pi is one
of p or q

116 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: # of Inserts

Theorem
If random variable Xi denotes the likelihood of needing to rehash after processing k

points, then
Xi ≤

2
i

Let p1, p2, . . . , pi be the points processed so far, and p and q be the closest among
these

Rehashing is needed while processing pi if pi = p or pi = q

Since points are processed in random order, there is a 2/i probability that pi is one
of p or q

117 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: # of Inserts

Theorem
If random variable Xi denotes the likelihood of needing to rehash after processing k

points, then
Xi ≤

2
i

Let p1, p2, . . . , pi be the points processed so far, and p and q be the closest among
these

Rehashing is needed while processing pi if pi = p or pi = q

Since points are processed in random order, there is a 2/i probability that pi is one
of p or q

118 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: # of Inserts

Theorem
The expected number of inserts is 3n.

Processing of pi involves

i inserts if rehashing takes place, and 1 insert otherwise

So, expected inserts for processing pi is

i · Xi + 1 · (1− Xi) = 1+ (i − 1) · Xi = 1+
2(i − 1)

i
≤ 3

Upper bound on expected inserts is thus 3n

Look Ma! I have a linear-time randomized closest pair algorithm—And it is not even
probabilistic!

119 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: # of Inserts

Theorem
The expected number of inserts is 3n.

Processing of pi involves

i inserts if rehashing takes place, and 1 insert otherwise

So, expected inserts for processing pi is

i · Xi + 1 · (1− Xi) = 1+ (i − 1) · Xi = 1+
2(i − 1)

i
≤ 3

Upper bound on expected inserts is thus 3n

Look Ma! I have a linear-time randomized closest pair algorithm—And it is not even
probabilistic!

120 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: # of Inserts

Theorem
The expected number of inserts is 3n.

Processing of pi involves

i inserts if rehashing takes place, and 1 insert otherwise

So, expected inserts for processing pi is

i · Xi + 1 · (1− Xi) = 1+ (i − 1) · Xi = 1+
2(i − 1)

i
≤ 3

Upper bound on expected inserts is thus 3n

Look Ma! I have a linear-time randomized closest pair algorithm—And it is not even
probabilistic!

121 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: # of Inserts

Theorem
The expected number of inserts is 3n.

Processing of pi involves

i inserts if rehashing takes place, and 1 insert otherwise

So, expected inserts for processing pi is

i · Xi + 1 · (1− Xi) = 1+ (i − 1) · Xi = 1+
2(i − 1)

i
≤ 3

Upper bound on expected inserts is thus 3n

Look Ma! I have a linear-time randomized closest pair algorithm—And it is not even
probabilistic!

122 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Quicksort Caching Hashing Universal/Perfect hash Closest pair

Randomized Closest Pair: # of Inserts

Theorem
The expected number of inserts is 3n.

Processing of pi involves

i inserts if rehashing takes place, and 1 insert otherwise

So, expected inserts for processing pi is

i · Xi + 1 · (1− Xi) = 1+ (i − 1) · Xi = 1+
2(i − 1)

i
≤ 3

Upper bound on expected inserts is thus 3n

Look Ma! I have a linear-time randomized closest pair algorithm—And it is not even
probabilistic!

123 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Probabilistic Algorithms

Algorithms that produce the correct answer with some probability

By re-running the algorithm many times, we can increase the probability to be
arbitrarily close to 1.0.

124 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters

To resolve collisions, hash tables have to store keys: O(mw) bits, where w is the
number of bits in the key

What if you want to store very large keys?

Radical idea: Don’t store the key in the table!

Potentially w-fold space reduction

125 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters

To resolve collisions, hash tables have to store keys: O(mw) bits, where w is the
number of bits in the key

What if you want to store very large keys?

Radical idea: Don’t store the key in the table!

Potentially w-fold space reduction

126 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters

To resolve collisions, hash tables have to store keys: O(mw) bits, where w is the
number of bits in the key

What if you want to store very large keys?

Radical idea: Don’t store the key in the table!

Potentially w-fold space reduction

127 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters
To reduce collisions, use multiple hash functions h1, ..., hk

Hash table is simply a bitvector B[1..m]

To insert key x , set B[h1(x)],B[h2(x)], ...,B[hk(x)]

Images from Wikipedia Commons

Membership check for y : all B[hi(y)] should be set

No false negatives, but false positives possible

No deletions possible in the current algorithm.

128 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters
To reduce collisions, use multiple hash functions h1, ..., hk
Hash table is simply a bitvector B[1..m]

To insert key x , set B[h1(x)],B[h2(x)], ...,B[hk(x)]

Images from Wikipedia Commons

Membership check for y : all B[hi(y)] should be set

No false negatives, but false positives possible

No deletions possible in the current algorithm.

129 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters
To reduce collisions, use multiple hash functions h1, ..., hk
Hash table is simply a bitvector B[1..m]

To insert key x , set B[h1(x)],B[h2(x)], ...,B[hk(x)]

Images from Wikipedia Commons

Membership check for y : all B[hi(y)] should be set

No false negatives, but false positives possible

No deletions possible in the current algorithm.

130 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters
To reduce collisions, use multiple hash functions h1, ..., hk
Hash table is simply a bitvector B[1..m]

To insert key x , set B[h1(x)],B[h2(x)], ...,B[hk(x)]

Images from Wikipedia Commons

Membership check for y : all B[hi(y)] should be set

No false negatives, but false positives possible

No deletions possible in the current algorithm.

131 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters
To reduce collisions, use multiple hash functions h1, ..., hk
Hash table is simply a bitvector B[1..m]

To insert key x , set B[h1(x)],B[h2(x)], ...,B[hk(x)]

Images from Wikipedia Commons

Membership check for y : all B[hi(y)] should be set

No false negatives, but false positives possible

No deletions possible in the current algorithm. 132 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters: False positives

Prob. that a bit is not set by h1 on inserting a key is (1− 1/m)

The probability it is not set by any hi is (1− 1/m)k

The probability it is not set after r key inserts is (1− 1/m)kr ≈ e−kr/m

Complementing, the prob. p that a certain bit is set is 1− e−kr/m

For a false positive on a key y , all the bits that it hashes to should be a 1. This
happens with probability (

1− e−kr/m
)k

= (1− p)k

133 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters: False positives

Prob. that a bit is not set by h1 on inserting a key is (1− 1/m)

The probability it is not set by any hi is (1− 1/m)k

The probability it is not set after r key inserts is (1− 1/m)kr ≈ e−kr/m

Complementing, the prob. p that a certain bit is set is 1− e−kr/m

For a false positive on a key y , all the bits that it hashes to should be a 1. This
happens with probability (

1− e−kr/m
)k

= (1− p)k

134 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters: False positives

Prob. that a bit is not set by h1 on inserting a key is (1− 1/m)

The probability it is not set by any hi is (1− 1/m)k

The probability it is not set after r key inserts is (1− 1/m)kr ≈ e−kr/m

Complementing, the prob. p that a certain bit is set is 1− e−kr/m

For a false positive on a key y , all the bits that it hashes to should be a 1. This
happens with probability (

1− e−kr/m
)k

= (1− p)k

135 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters: False positives

Prob. that a bit is not set by h1 on inserting a key is (1− 1/m)

The probability it is not set by any hi is (1− 1/m)k

The probability it is not set after r key inserts is (1− 1/m)kr ≈ e−kr/m

Complementing, the prob. p that a certain bit is set is 1− e−kr/m

For a false positive on a key y , all the bits that it hashes to should be a 1. This
happens with probability (

1− e−kr/m
)k

= (1− p)k

136 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters: False positives

Prob. that a bit is not set by h1 on inserting a key is (1− 1/m)

The probability it is not set by any hi is (1− 1/m)k

The probability it is not set after r key inserts is (1− 1/m)kr ≈ e−kr/m

Complementing, the prob. p that a certain bit is set is 1− e−kr/m

For a false positive on a key y , all the bits that it hashes to should be a 1. This
happens with probability (

1− e−kr/m
)k

= (1− p)k

137 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters

Note: n = m/r is the storage (in bits) used per key.

So, we can rewrite the FP equation as:(
1− e−kr/m

)k
=

(
1− e−k/n

)k

Optimal value of k can be shown to be n ln 2.

The FP rate simplifies to 0.5n ln 2 = 0.619n

A Bloom filter that uses just 8 bits per key to store an arbitrary sized key will have
an FP rate of 2%

Important: Bloom filters can be used as a prefilter, e.g., if actual keys are in
secondary storage (e.g., files or internet repositories)

138 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters

Note: n = m/r is the storage (in bits) used per key.

So, we can rewrite the FP equation as:(
1− e−kr/m

)k
=

(
1− e−k/n

)k
Optimal value of k can be shown to be n ln 2.

The FP rate simplifies to 0.5n ln 2 = 0.619n

A Bloom filter that uses just 8 bits per key to store an arbitrary sized key will have
an FP rate of 2%

Important: Bloom filters can be used as a prefilter, e.g., if actual keys are in
secondary storage (e.g., files or internet repositories)

139 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Bloom Filters

Note: n = m/r is the storage (in bits) used per key.

So, we can rewrite the FP equation as:(
1− e−kr/m

)k
=

(
1− e−k/n

)k
Optimal value of k can be shown to be n ln 2.

The FP rate simplifies to 0.5n ln 2 = 0.619n

A Bloom filter that uses just 8 bits per key to store an arbitrary sized key will have
an FP rate of 2%

Important: Bloom filters can be used as a prefilter, e.g., if actual keys are in
secondary storage (e.g., files or internet repositories)

140 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Using arithmetic for substring matching

Problem: Given strings T [1..n] and P[1..m], find occurrences of P in T in O(n+m)

time.

Idea: To simplify presentation, assume P, T range over [0-9]

Interpret P[1..m] as digits of a number

p = 10m−1P[1] + 10m−2P[2] + · · · 10m−mP[m]

Similarly, interpret T [i..(i +m− 1)] as the number ti
Note: P is a substring of T at i iff p = ti
To get ti+1, shift T [i] out of ti , and shift in T [i +m]:

ti+1 = (ti − 10m−1T [i]) · 10+ T [i +m]

We have an O(n+m) algorithm. Almost: we still need to figure out how to operate
on m-digit numbers in constant time! 141 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Rabin-Karp Fingerprinting

Key Idea

Instead of working with m-digit numbers,

perform all arithmetic modulo a random prime number q,

where q > m2 fits within wordsize

All observations made on previous slide still hold

Except that p = ti does not guarantee a match

Typically, we expect matches to be infrequent, so we can use O(m) exact-matching

algorithm to confirm probable matches.

142 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Carter-Wegman-Rabin-Karp Algorithm

Difficulty with Rabin-Karp: Need to generate random primes, which is not an efficient task.

New Idea: Make the radix random, as opposed to the modulus
We still compute modulo a prime q, but it is not random.

Alternative interpretation: We treat P as a polynomial

p(x) =
m∑
i=1

P[m− i] · x i

and evaluate this polynomial at a randomly chosen value of x

Like any probabilistic algorithm we can increase correctness probability by repeating the
algorithm with different randoms.
Different prime numbers for Rabin-Karp
Different values of x for CWRK

143 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Carter-Wegman-Rabin-Karp Algorithm

p(x) =
m∑
i=1

P[m− i] · x i

Random choice does not imply high probability of being right.

You need to explicitly establish correctness probability.

So, what is the likelihood of false matches?

A false match occurs if p1(x) = p2(x), i.e., p1(x)− p2(x) = p3(x) = 0.

Arithmetic modulo prime defines a field, so an mth degree polynomial has m+ 1
roots.

Thus, (m+ 1)/q of the q (recall q is the prime number used for performing modulo
arithmetic) possible choices of x will result in a false match, i.e., probability of false
positive = (m+ 1)/q

144 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Carter-Wegman-Rabin-Karp Algorithm

p(x) =
m∑
i=1

P[m− i] · x i

Random choice does not imply high probability of being right.

You need to explicitly establish correctness probability.

So, what is the likelihood of false matches?

A false match occurs if p1(x) = p2(x), i.e., p1(x)− p2(x) = p3(x) = 0.

Arithmetic modulo prime defines a field, so an mth degree polynomial has m+ 1
roots.

Thus, (m+ 1)/q of the q (recall q is the prime number used for performing modulo
arithmetic) possible choices of x will result in a false match, i.e., probability of false
positive = (m+ 1)/q

145 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Carter-Wegman-Rabin-Karp Algorithm

p(x) =
m∑
i=1

P[m− i] · x i

Random choice does not imply high probability of being right.

You need to explicitly establish correctness probability.

So, what is the likelihood of false matches?

A false match occurs if p1(x) = p2(x), i.e., p1(x)− p2(x) = p3(x) = 0.

Arithmetic modulo prime defines a field, so an mth degree polynomial has m+ 1
roots.

Thus, (m+ 1)/q of the q (recall q is the prime number used for performing modulo
arithmetic) possible choices of x will result in a false match, i.e., probability of false
positive = (m+ 1)/q

146 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Carter-Wegman-Rabin-Karp Algorithm

p(x) =
m∑
i=1

P[m− i] · x i

Random choice does not imply high probability of being right.

You need to explicitly establish correctness probability.

So, what is the likelihood of false matches?

A false match occurs if p1(x) = p2(x), i.e., p1(x)− p2(x) = p3(x) = 0.

Arithmetic modulo prime defines a field, so an mth degree polynomial has m+ 1
roots.

Thus, (m+ 1)/q of the q (recall q is the prime number used for performing modulo
arithmetic) possible choices of x will result in a false match, i.e., probability of false
positive = (m+ 1)/q

147 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Fermat’s Theorem
ap−1 ≡ 1 (mod p)

Recall {1a, 2a, 3a, . . . , (p− 1)a} ≡ {1, 2, . . . , p− 1} (mod p)

Multiply all elements of both sides:

(p− 1)!ap−1 ≡ (p− 1)! (mod p)

Canceling out (p− 1)! from both sides, we have the theorem!

148 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Fermat’s Theorem
ap−1 ≡ 1 (mod p)

Recall {1a, 2a, 3a, . . . , (p− 1)a} ≡ {1, 2, . . . , p− 1} (mod p)

Multiply all elements of both sides:

(p− 1)!ap−1 ≡ (p− 1)! (mod p)

Canceling out (p− 1)! from both sides, we have the theorem!

149 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Fermat’s Theorem
ap−1 ≡ 1 (mod p)

Recall {1a, 2a, 3a, . . . , (p− 1)a} ≡ {1, 2, . . . , p− 1} (mod p)

Multiply all elements of both sides:

(p− 1)!ap−1 ≡ (p− 1)! (mod p)

Canceling out (p− 1)! from both sides, we have the theorem!

150 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Fermat’s Theorem
ap−1 ≡ 1 (mod p)

Recall {1a, 2a, 3a, . . . , (p− 1)a} ≡ {1, 2, . . . , p− 1} (mod p)

Multiply all elements of both sides:

(p− 1)!ap−1 ≡ (p− 1)! (mod p)

Canceling out (p− 1)! from both sides, we have the theorem!

151 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Given a number N , we can use Fermat’s theorem as a probabilistic test to see if it is
prime:

if aN−1 ̸≡ 1 (mod N) then N is not prime

Repeat with different values of a to gain more confidence

Question: If N is not prime, what is the probability that the above procedure will
fail?

For Carmichael’s numbers, the probability is 1 — but ignore this for now, since these

numbers are very rare.

For other numbers, we can show that the above procedure works with probability 0.5

152 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Given a number N , we can use Fermat’s theorem as a probabilistic test to see if it is
prime:

if aN−1 ̸≡ 1 (mod N) then N is not prime

Repeat with different values of a to gain more confidence

Question: If N is not prime, what is the probability that the above procedure will
fail?

For Carmichael’s numbers, the probability is 1 — but ignore this for now, since these

numbers are very rare.

For other numbers, we can show that the above procedure works with probability 0.5

153 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Given a number N , we can use Fermat’s theorem as a probabilistic test to see if it is
prime:

if aN−1 ̸≡ 1 (mod N) then N is not prime

Repeat with different values of a to gain more confidence

Question: If N is not prime, what is the probability that the above procedure will
fail?

For Carmichael’s numbers, the probability is 1 — but ignore this for now, since these

numbers are very rare.

For other numbers, we can show that the above procedure works with probability 0.5

154 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Given a number N , we can use Fermat’s theorem as a probabilistic test to see if it is
prime:

if aN−1 ̸≡ 1 (mod N) then N is not prime

Repeat with different values of a to gain more confidence

Question: If N is not prime, what is the probability that the above procedure will
fail?

For Carmichael’s numbers, the probability is 1 — but ignore this for now, since these

numbers are very rare.

For other numbers, we can show that the above procedure works with probability 0.5

155 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Lemma

If aN−1 ̸≡ 1 (mod N) for a relatively prime to N, then it holds for at least half the

choices of a < N.

If there is no b such that bN−1 ≡ 1 (mod N), then we have nothing to prove.

Otherwise, pick one such b, and consider c ≡ ab.

Note cN−1 ≡ aN−1bN−1 ≡ aN−1 ̸≡ 1

Thus, for every b for which Fermat’s test is satisfied, there exists a c that does not
satisfy it.

Moreover, since a is relatively prime to N , ab ̸≡ ab′ unless b ≡ b′.

Thus, at least half of the numbers x < N relatively prime to N will fail the test.

156 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Lemma

If aN−1 ̸≡ 1 (mod N) for a relatively prime to N, then it holds for at least half the

choices of a < N.

If there is no b such that bN−1 ≡ 1 (mod N), then we have nothing to prove.

Otherwise, pick one such b, and consider c ≡ ab.

Note cN−1 ≡ aN−1bN−1 ≡ aN−1 ̸≡ 1

Thus, for every b for which Fermat’s test is satisfied, there exists a c that does not
satisfy it.

Moreover, since a is relatively prime to N , ab ̸≡ ab′ unless b ≡ b′.

Thus, at least half of the numbers x < N relatively prime to N will fail the test.

157 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Lemma

If aN−1 ̸≡ 1 (mod N) for a relatively prime to N, then it holds for at least half the

choices of a < N.

If there is no b such that bN−1 ≡ 1 (mod N), then we have nothing to prove.

Otherwise, pick one such b, and consider c ≡ ab.

Note cN−1 ≡ aN−1bN−1 ≡ aN−1 ̸≡ 1

Thus, for every b for which Fermat’s test is satisfied, there exists a c that does not
satisfy it.

Moreover, since a is relatively prime to N , ab ̸≡ ab′ unless b ≡ b′.

Thus, at least half of the numbers x < N relatively prime to N will fail the test.

158 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Lemma

If aN−1 ̸≡ 1 (mod N) for a relatively prime to N, then it holds for at least half the

choices of a < N.

If there is no b such that bN−1 ≡ 1 (mod N), then we have nothing to prove.

Otherwise, pick one such b, and consider c ≡ ab.

Note cN−1 ≡ aN−1bN−1 ≡ aN−1 ̸≡ 1

Thus, for every b for which Fermat’s test is satisfied, there exists a c that does not
satisfy it.

Moreover, since a is relatively prime to N , ab ̸≡ ab′ unless b ≡ b′.

Thus, at least half of the numbers x < N relatively prime to N will fail the test.

159 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Lemma

If aN−1 ̸≡ 1 (mod N) for a relatively prime to N, then it holds for at least half the

choices of a < N.

If there is no b such that bN−1 ≡ 1 (mod N), then we have nothing to prove.

Otherwise, pick one such b, and consider c ≡ ab.

Note cN−1 ≡ aN−1bN−1 ≡ aN−1 ̸≡ 1

Thus, for every b for which Fermat’s test is satisfied, there exists a c that does not
satisfy it.

Moreover, since a is relatively prime to N , ab ̸≡ ab′ unless b ≡ b′.

Thus, at least half of the numbers x < N relatively prime to N will fail the test.

160 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Lemma

If aN−1 ̸≡ 1 (mod N) for a relatively prime to N, then it holds for at least half the

choices of a < N.

If there is no b such that bN−1 ≡ 1 (mod N), then we have nothing to prove.

Otherwise, pick one such b, and consider c ≡ ab.

Note cN−1 ≡ aN−1bN−1 ≡ aN−1 ̸≡ 1

Thus, for every b for which Fermat’s test is satisfied, there exists a c that does not
satisfy it.

Moreover, since a is relatively prime to N , ab ̸≡ ab′ unless b ≡ b′.

Thus, at least half of the numbers x < N relatively prime to N will fail the test.
161 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

Figure 1.7 An algorithm for testing primality.
function primality(N)
Input: Positive integer N
Output: yes/no

Pick a positive integer a < N at random
if aN−1 ≡ 1 (mod N):

return yes
else:

return no

Is aN−1 ≡ 1 mod N?Pick some a

“prime”

“composite”
Fermat’s test

Pass

Fail

The problem is that Fermat’s theorem is not an if-and-only-if condition; it doesn’t say what
happens when N is not prime, so in these cases the preceding diagram is questionable. In
fact, it is possible for a composite number N to pass Fermat’s test (that is, aN−1 ≡ 1 mod
N) for certain choices of a. For instance, 341 = 11 · 31 is not prime, and yet 2340 ≡ 1 mod
341. Nonetheless, we might hope that for composite N , most values of a will fail the test.
This is indeed true, in a sense we will shortly make precise, and motivates the algorithm of
Figure 1.7: rather than fixing an arbitrary value of a in advance, we should choose it randomly
from {1, . . . ,N − 1}.
In analyzing the behavior of this algorithm, we first need to get a minor bad case out of the

way. It turns out that certain extremely rare composite numbers N , called Carmichael num-
bers, pass Fermat’s test for all a relatively prime to N . On such numbers our algorithm will
fail; but they are pathologically rare, and we will later see how to deal with them (page 36),
so let’s ignore these numbers for the time being.
In a Carmichael-free universe, our algorithm works well. Any prime number N will

of course pass Fermat’s test and produce the right answer. On the other hand, any non-
Carmichael composite number N must fail Fermat’s test for some value of a; and as we will
now show, this implies immediately that N fails Fermat’s test for at least half the possible
values of a!

Lemma If aN−1 �≡ 1 mod N for some a relatively prime to N , then it must hold for at least
half the choices of a < N .

Proof. Fix some value of a for which aN−1 �≡ 1 mod N . The key is to notice that every element
b < N that passes Fermat’s test with respect to N (that is, bN−1 ≡ 1 mod N) has a twin, a · b,
that fails the test:

(a · b)N−1 ≡ aN−1 · bN−1 ≡ aN−1 �≡ 1 mod N.

Moreover, all these elements a · b, for fixed a but different choices of b, are distinct, for the
same reason a · i �≡ a · j in the proof of Fermat’s test: just divide by a.

34

When Fermat’s test returns “prime” Pr[N is not prime] < 0.5

If Fermat’s test is repeated for k choices of a, and returns “prime” in each case,
Pr[N is not prime] < 0.5k

In fact, 0.5 is an upper bound. Empirically, the probability has been much smaller.

162 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Primality Testing

long. What makes this task quite easy is that primes are abundant—a random n-bit number
has roughly a one-in-n chance of being prime (actually about 1/(ln 2n) ≈ 1.44/n). For instance,
about 1 in 20 social security numbers is prime!

Lagrange’s prime number theorem Let π(x) be the number of primes ≤ x. Then π(x) ≈
x/(ln x), or more precisely,

lim
x→∞

π(x)

(x/ ln x)
= 1.

Such abundance makes it simple to generate a random n-bit prime:

• Pick a random n-bit number N .

• Run a primality test on N .

• If it passes the test, output N ; else repeat the process.

How fast is this algorithm? If the randomly chosen N is truly prime, which happens
with probability at least 1/n, then it will certainly pass the test. So on each iteration, this
procedure has at least a 1/n chance of halting. Therefore on average it will halt within O(n)
rounds (Exercise 1.34).
Next, exactly which primality test should be used? In this application, since the numbers

we are testing for primality are chosen at random rather than by an adversary, it is sufficient
to perform the Fermat test with base a = 2 (or to be really safe, a = 2, 3, 5), because for
random numbers the Fermat test has a much smaller failure probability than the worst-case
1/2 bound that we proved earlier. Numbers that pass this test have been jokingly referred
to as “industrial grade primes.” The resulting algorithm is quite fast, generating primes that
are hundreds of bits long in a fraction of a second on a PC.
The important question that remains is: what is the probability that the output of the al-

gorithm is really prime? To answer this we must first understand how discerning the Fermat
test is. As a concrete example, suppose we perform the test with base a = 2 for all numbers
N ≤ 25×109. In this range, there are about 109 primes, and about 20,000 composites that pass
the test (see the following figure). Thus the chance of erroneously outputting a composite is
approximately 20,000/109 = 2 × 10−5. This chance of error decreases rapidly as the length of
the numbers involved is increased (to the few hundred digits we expect in our applications).

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

Fermat test
(base a = 2)

Composites

Pass

Fail

≈ 109 primes
≈ 20,000 composites

Before primality test:
all numbers ≤ 25 × 109 After primality test

Primes

37Empirically, on numbers less than 25 billion, the probability of Fermat’s test failing
to detect non-primes (with a = 2) is more like 0.00002

This probability decreases even more for larger numbers.
163 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Prime number generation

Lagrange’s Prime Number Theorem

For large N , primes occur approx. once every logN numbers.

Generating Primes

Generate a random number

Probabilistically test it is prime, and if so output it

Otherwise, repeat the whole process

What is the complexity of this procedure?
O(log2 N) multiplications on logN bit numbers

If N is not prime, should we try N + 1,N + 2, . . . instead of generating a new
random number?
No, it is not easy to decide when to give up.

164 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Prime number generation

Lagrange’s Prime Number Theorem

For large N , primes occur approx. once every logN numbers.

Generating Primes

Generate a random number

Probabilistically test it is prime, and if so output it

Otherwise, repeat the whole process

What is the complexity of this procedure?
O(log2 N) multiplications on logN bit numbers

If N is not prime, should we try N + 1,N + 2, . . . instead of generating a new
random number?
No, it is not easy to decide when to give up.

165 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Prime number generation

Lagrange’s Prime Number Theorem

For large N , primes occur approx. once every logN numbers.

Generating Primes

Generate a random number

Probabilistically test it is prime, and if so output it

Otherwise, repeat the whole process

What is the complexity of this procedure?

O(log2 N) multiplications on logN bit numbers

If N is not prime, should we try N + 1,N + 2, . . . instead of generating a new
random number?
No, it is not easy to decide when to give up.

166 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Prime number generation

Lagrange’s Prime Number Theorem

For large N , primes occur approx. once every logN numbers.

Generating Primes

Generate a random number

Probabilistically test it is prime, and if so output it

Otherwise, repeat the whole process

What is the complexity of this procedure?
O(log2 N) multiplications on logN bit numbers

If N is not prime, should we try N + 1,N + 2, . . . instead of generating a new
random number?

No, it is not easy to decide when to give up.

167 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Prime number generation

Lagrange’s Prime Number Theorem

For large N , primes occur approx. once every logN numbers.

Generating Primes

Generate a random number

Probabilistically test it is prime, and if so output it

Otherwise, repeat the whole process

What is the complexity of this procedure?
O(log2 N) multiplications on logN bit numbers

If N is not prime, should we try N + 1,N + 2, . . . instead of generating a new
random number?
No, it is not easy to decide when to give up. 168 / 169

Intro Probability Basics Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing

Rabin-Miller Test

Works on Carmichael’s numbers

For prime number test, we consider only odd N , so N − 1 = 2tu for some odd u

Compute
au, a2u, a4u, . . . , a2

tu = aN−1

If aN−1 is not 1 then we know N is composite.

Otherwise, we do a follow-up test on au, a2u etc.

Let a2
ru be the first term that is equivalent to 1.

If r > 0 and a2
r−1u ̸≡ −1 then N is composite

This combined test detects non-primes with a probability of at least 0.75 for all
numbers.

169 / 169

	Intro
	Probability Basics
	Discrete Probability
	Coupon Collection
	Birthday
	Balls and Bins

	Taming distribution
	Quicksort
	Caching
	Hashing
	Universal/Perfect hash
	Closest pair

	Probabilistic Algorithms
	Bloom filter
	Rabin-Karp
	Prime testing

