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String Matching

Strings provide the primary means of interfacing to machines.
programs, documents, ...

Consequently, string matching is central to numerous, widely-used systems and tools
Compilers and interpreters, command processors (e.g., bash), text-processing tools (sed,
awk, ...)

Document searching and processing, e.g., grep, Google, NLP tools, ...

Editors and word-processors

File versioning and compression, e.g., rcs, svn, rsync, ...

Network and system management, e.g., intrusion detection, performance monitoring, ...

Computational biology, e.g., DNA alignment, mutations, evolutionary trees, ...
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Terminology

String: List S[1..i] of characters over an alphabet Σ.

Substring: A string P[1..j] such that for P[1..j] = S[l+1..l+j] for some l.

Prefix: A substring P of S occurring at its beginning

Suffix: A substring P of S occurring at its end

Subsequence: Similar to substring, but the the elements of P need not occur
contiguously in S.

For instance, bcd is a substring of abcde, while de is a suffix, abcd is a prefix, and acd is
a subsequence. A substring (or prefix/suffix/subsequence) T of S is said to be proper if
T ̸= S.
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String Matching Problems

Given a “pattern” string p and another string s:

Exact match: Is p a substring of s?

Match with wildcards: In this case, the pattern can contain wildcard characters that can

match any character in s

Regular expression match: In this case, p is regular expression

Substring/prefix/suffix: Does a (sufficiently long) substring/prefix/suffix of p occur in s?

Approximate match: Is there a substring of s that is within a certain edit distance from p?

Multi-match: Instead of a single pattern, you are given a set p1, .., pn of patterns. Applies to all

above problems.
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String Matching Techniques

Finite-automata and variants: Regexp matching, Knuth-Morris-Pratt, Aho-Corasick

Seminumerical Techniques: Shift-and, Shift-and with errors, Rabin-Karp, Hash-based

Suffix trees and suffix arrays: Techniques for finding substrings, suffixes, etc.
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Language of Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet Σ.
Let R be the set of all regular expressions over Σ. Then,

Empty String : ϵ ∈ R

Unit Strings : α ∈ Σ ⇒ α ∈ R

Concatenation : r1, r2 ∈ R ⇒ r1r2 ∈ R

Alternative : r1, r2 ∈ R ⇒ (r1 | r2) ∈ R

Kleene Closure : r ∈ R ⇒ r∗ ∈ R
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Regular Expression

a : stands for the set of strings {a}

a | b : stands for the set {a,b}
Union of sets corresponding to REs a and b

ab : stands for the set {ab}
Analogous to set product on REs for a and b
(a|b)(a|b): stands for the set {aa,ab,ba,bb}.

a∗ : stands for the set {ϵ,a,aa,aaa, . . .} that contains all strings of zero or more a’s.

Analogous to closure of the product operation.
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Regular Expression Examples

(a|b)∗ : Set of strings with zero or more a’s and zero or more b’s:

{ϵ, a, b, aa, ab, ba, bb, aaa, aab, . . .}

(a∗b∗) : Set of strings with zero or more a’s and zero or more b’s such that all a’s
occur before any b:

{ϵ, a, b, aa, ab, bb, aaa, aab, abb, . . .}

(a∗b∗)∗ : Set of strings with zero or more a’s and zero or more b’s:

{ϵ, a, b, aa, ab, ba, bb, aaa, aab, . . .}
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Semantics of Regular Expressions

Semantic Function L: Maps regular expressions to sets of strings.

L(ϵ) = {ϵ}
L(α) = {α} (α ∈ Σ)

L(r1 | r2) = L(r1) ∪ L(r2)
L(r1 r2) = L(r1) · L(r2)
L(r∗) = {ϵ} ∪ (L(r) · L(r∗))
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Finite State Automata

Regular expressions are used for specification, while FSA are used for computation.
FSAs are represented by a labeled directed graph.

A finite set of states (vertices).

Transitions between states (edges).

Labels on transitions are drawn from Σ ∪ {ϵ}.

One distinguished start state.

One or more distinguished final states.
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Finite State Automata: An Example

Consider the Regular Expression (a | b)∗a(a | b).
L((a | b)∗a(a | b)) = {aa,ab,aaa,aab,baa,bab,

aaaa,aaab,abaa,abab,baaa, . . .}.
The following (non-deterministic) automaton determines whether an input string
belongs to L((a | b)∗a(a | b):

a

a

b
b

a

1 2 3
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Determinism

(a | b)∗a(a | b):

Nondeterministic:
(NFA)

a

a

b
b

a

1 2 3

Deterministic:
(DFA)

a

a

b

b

a

a

b

b

1 2

3

4
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Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

. . . if beginning from the start state

. . . we can trace some path through the automaton

. . . such that the sequence of edge labels spells x

. . . and end in a final state.

Or, there exists a path in the graph from the start state to a final state such that the
sequence of labels on the path spells out x
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1
Path 2: 1 1 1 2 3 Accept
Path 3: 1 2 3 ⊥ ⊥

Accept
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Recognition with a DFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b

b

a

a

b

b

1 2

3

4

Input: a b a b

Path: 1 2 4 2 4 Accept
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NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

NFA may have transitions labeled by ϵ.

(Spontaneous transitions)

All transition labels in a DFA belong to Σ.

For some string x , there may be many accepting paths in an NFA.

For all strings x , there is one unique accepting path in a DFA.

Usually, an input string can be recognized faster with a DFA.

NFAs are typically smaller than the corresponding DFAs.
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NFA vs. DFA

n = Size of Regular Expression (pattern)
m = Length of Input String (subject)

NFA DFA
Size of
Automaton

O(n) O(2n)

Recognition time
per input string

O(n×m) O(m)
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Converting RE to FSA

NFA: Compile RE to NFA (Thompson’s construction [1968]), then match.
DFA: Compile to DFA, then match

(A) Convert NFA to DFA (Rabin-Scott construction), minimize

(B) Direct construction: RE derivatives [Brzozowski 1964].

More convenient and a bit more general than (A).

(C) Direct construction of [McNaughton Yamada 1960]

Can be seen as a (more easily implemented) specialization of (B).
Used in Lex and its derivatives, i.e., most compilers use this algorithm.
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Converting RE to FSA

NFA approach takes O(n) NFA construction plus O(nm) matching, so has worst
case O(nm) complexity.

DFA approach takes O(2n) construction plus O(m)match, so has worst case
O(2n +m) complexity.

So, why bother with DFA?

In many practical applications, the pattern is fixed and small, while the subject text is very

large. So, the O(mn) term is dominant over O(2n)

For many important cases, DFAs are of polynomial size

In many applications, exponential blow-ups don’t occur, e.g., compilers.
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McNaughton-Yamada Construction

Positions in RE are numbered, e.g., 0(a1|b2)∗ a3(a4|b5)$6.

RE suffix that remains to be matched is identified by its start position

Or more generally, a set of suffixes is identified by a set of positions

Each DFA state corresponds to a position set (pset)

R1 ≡ {1, 2, 3}
R2 ≡ {1, 2, 3, 4, 5}
R3 ≡ {1, 2, 3, 4, 5, 6}
R4 ≡ {1, 2, 3, 6}

a

a

b

b

a

a

b

b

1 2

3

4
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McNaughton-Yamada: Definitions
@(R, p): symbol at position p in R

Example for R = (a1|b2)∗ a3(a4|b5)$6 : @(R, 1) = a, @(R, 5) = b.

filter(R, P, s): {p ∈ P | @(R, p) = s}
Example: filter(R, {1, 2, 3}, a) = {1, 3}

filter(R, {1, 2, 4, 5}, b) = {2, 5}
first(R): First positions in R

first(a) = pos(a)

first(R1|R2) = first(R1) ∪ first(R2)

first(R1 · R2) = first(R1), if R1 doesn’t match ϵ

first(R1 · R2) = first(R1) ∪ first(R2), otherwise

first(R∗) = first(R)

Example: first(R) = {1, 2, 3}
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McNaughton-Yamada: Definitions (Continued)

follow(R, p): Positions immediately following p in R.

follow(R1 · R2, p) ⊇ first(R2), if p is rightmost in R1

follow(R∗, p) ⊇ first(R), if p is rightmost in R

Example for R = (a1|b2)∗ a3(a4|b5)$6 :
follow(R, 1) = {1, 2, 3}
follow(R, 2) = {1, 2, 3}
follow(R, 3) = {4, 5}
follow(R, 4) = {6}

follow(R, P):
⋃

p∈P follow(R, p)

Example: follow(R, {3, 4}) = {4, 5, 6}
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McNaughton-Yamada Algorithm

BuildMY(R, P)

Create an automaton state S labeled P

Mark this state as final if $ ∈@(R, P)

foreach symbol a ∈@(R, P)− {$} do
Call BuildMY(R, follow(R, filter(R, P, a)) if hasn’t previously been called
Create a transition on a from S to the root of this subautomaton

DFA construction begins with the call BuildMY(R, follow({0})). The root of the
resulting automaton is marked as a start state.
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BuildMY Illustration on R = 0(a1|b2)∗ a3(a4|b5)$6
Computations Needed

follow({0}) = {1, 2, 3}
follow({1}) = follow({2}) = {1, 2, 3}
follow({3}) = {4, 5}
follow({4}) = follow({5}) = {6}

filter({1, 2, 3}, a) = {1, 3}, filter({1, 2, 3}, b) = {2}
follow({1, 3}) = {1, 2, 3, 4, 5}

filter({1, 2, 3, 4, 5}, a) = {1, 3, 4}
filter({1, 2, 3, 4, 5}, b) = {2, 5}
follow({1, 3, 4}) = {1, 2, 3, 4, 5, 6}
follow({2, 5}) = {1, 2, 3, 6}

filter({1, 2, 3, 4, 5, 6}, a) = {1, 3, 4}
filter({1, 2, 3, 4, 5, 6}, b) = {2, 5}
filter({1, 2, 3, 6}, a) = {1, 3} filter({1, 2, 3, 6}, b) = {2}

Resulting Automaton

a

a

b

b

a

a

b

b

1 2

3

4

State Pset

1 {1,2,3}

2 {1,2,3,4,5}

3 {1,2,3,4,5,6}

4 {1,2,3,6}
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RE Matching: Summary

Regular expression matching is much more powerful than matching on plain strings
(e.g., prefix, suffix, substring, etc.)

Natural that RE matching algorithms can be used to solve plain string matching

But usually, you pay for increased power: more complex algorithms, larger runtimes or

storage.

We study the RE approach because it seems to not only do RE match-
ing, but yield simpler, more efficient algorithms for matching plain
strings.
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String Lookup (Not Search)

Problem: Determine if s equals any of the strings p1, ..., pk .

Equivalent to the question: does the RE p1|p2| · · · |pk match s?

Results in an FSA that is a tree

More commonly known as a trie

We can use BuildMY .

But since the construction is obvious, we won’t.
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Trie Example

R0 = top|tool|tooth|at|sunk|sunny

 0 

1

 t 

8

 a 

10

 s 

2

 o 

3

 p 

4

 o 

5

 l 

6

 t 

7

 h 

9

 t 

11

 u 

12

 n 

13

 k 

14

 n 

15

 y 
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Trie Summary

A data structure for efficient lookup

Construction time linear in the size of keywords

Search time linear in the size of the input string

Can also support maximal common prefix (MCP) query

Can also be used for efficient representation of string sets

Takes O(|s|) time to check if s belongs to the set
Set union/intersection are linear in size of the smaller set
Sublinear in input size when one input trie is much larger than the other

Can compute set difference as well — with same complexity.
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Implementing Transitions

How to implement transitions?

Array: Efficient, but unacceptable space when |Σ| is large

Linked list: Space-efficient, but slow

Hash tables: Mid-way between the above two options, but noticeably slower than
arrays. Collisions are a concern.

But customized hash tables for this purpose can be developed.
Alternatively, since transition tables are static, we can look for perfect hash
functions

Specialized representations: For special cases such as exact search, we could develop
specialized alternatives that are more efficient than all of the above.
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Exact Search

Determine if a pattern P[1..n] occurs within subject S[1..m]

Find j such that P[1..n] = S[j..(j+n−1)]

An RE matching problem: Does Σ∗PΣ∗ match S?

Note: Σ∗ matches any arbitrary string (incl. ϵ)

We consider Σ∗p since it can identify all matches

A match can be reported each time a final state is reached.

In contrast, an automaton for Σ∗PΣ∗ may not report all matches
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Exact Search Example

Consider R0 = (Σ0)∗a1a2b3a4b5a6a7$8

We use McNaughton-Yamada. Recall that:

States are identified by position sets.

A position j denotes:

a match for the pattern prefix upto but not

including j, or

the need to match pattern suffix starting at j in

order to complete the match.

For instance, position set {0, 2, 3} means that we
have so far matched ϵ, a and aa.

Or equivalently, Σ∗, Σ∗a and Σ∗aa.

1  b 

12

 a  b 

123

 a 

 a 

14

 b 

 b 

125

 a 

 a 

16

 b 

 b 

127

 a 

 b 

1238

 a 

 a 

 b 
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Exact Search: Complexity

Positives:
Matching is very fast, taking only O(m) time.

Only linear (rather than exponential) number of states.

Downsides:
Construction of psets for each state takes up to O(n) time
Thus, overall complexity of automata construction is O(n2) rather than O(n).

Upto |Σ| transitions per state
Automaton size is O(n|Σ|) rather than O(n).

Question: Can we do better?
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Improving Exact Search: Observations

The DFA has a linear structure, with states 0 to n:

State i is reached on matching the pattern prefix P[1..i]

pset(i) identifies all viable prefix matches of P

i.e., ∀j ∈ pset(i), P[1..j] matches a subject suffix.

S a a b a b a a · · · · · · · · ·
Viable match 1 a1 a2 b3 a4 b5 a6 a7 $8

Viable match 2 Σ Σ Σ Σ Σ a1 a2 b3

Viable match 3 Σ Σ Σ Σ Σ Σ a1 a2

Viable match 4 Σ Σ Σ Σ Σ Σ Σ a1

(Σ0)∗a1a2b3a4b5a6a7$8

1  b 

12

 a  b 

123

 a 

 a 

14

 b 

 b 

125

 a 

 a 

16

 b 

 b 

127

 a 

 b 

1238

 a 

 a 

 b 
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Improving Exact Search: Key Ideas

Main Idea

Remember only the second largest j in pset(i)

You can look at pset(j) for the next smaller prefix

Add failure links from state i to j for this purpose

Two positions per pset =⇒ O(n) construction time

Failure links eliminate the need for all backward transitions

Go to j and take forward transitions from there.

One forward and failure transition pset =⇒ O(n) size

(Σ0)∗a1a2b3a4b5a6a7$8

1  b 

12

 a  b 

123

 a 

 a 

14

 b 

 b 

125

 a 

 a 

16

 b 

 b 

127

 a 

 b 

1238

 a 

 a 

 b 
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Exact Search: KMP Automaton

Only two positions per state: {j, i}
Two trans per state: forward and fail

If the symbol at both positions is the same, then the

next state has the pset {j + 1, i + 1}

Otherwise, the match at j cannot advance on the

symbol at i.

Use the fail link to get to the next shorter prefix
Keep following fail links until you can advance

Failure link chase is amortized O(1) time, while other

steps are O(1) time.

1  b 

12

 a  b 

123

 a 

 a 

14

 b 

 b 

125

 a 

 a 

16

 b 

 b 

127

 a 

 b 

1238

 a 

 a 

 b 

1

12

 a 

23

 a 

14

 b 

25

 a 

16

 b 

27

 a 

38

 a 
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Exact Search: KMP Automaton

Only two positions per state: {j, i}
Two trans per state: forward and fail

If the symbol at both positions is the same, then the

next state has the pset {j + 1, i + 1}
Otherwise, the match at j cannot advance on the

symbol at i.

Use the fail link to get to the next shorter prefix
Keep following fail links until you can advance
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steps are O(1) time.

1  b 

12

 a  b 

123

 a 

 a 

14

 b 

 b 
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 a 

 a 
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 b 

 b 
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 a 
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Exact Search: KMP Automaton

Only two positions per state: {j, i}
Two trans per state: forward and fail

If the symbol at both positions is the same, then the

next state has the pset {j + 1, i + 1}
Otherwise, the match at j cannot advance on the

symbol at i.

Use the fail link to get to the next shorter prefix

Keep following fail links until you can advance

Failure link chase is amortized O(1) time, while other

steps are O(1) time.

1  b 

12

 a  b 

123

 a 

 a 

14

 b 

 b 

125

 a 

 a 

16

 b 

 b 
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 a 

 b 
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 a 

 a 

 b 

1

12

 a 

23

 a 

14

 b 

25

 a 

16

 b 

27

 a 

38

 a 
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Exact Search: KMP Automaton

Only two positions per state: {j, i}
Two trans per state: forward and fail

If the symbol at both positions is the same, then the

next state has the pset {j + 1, i + 1}
Otherwise, the match at j cannot advance on the

symbol at i.

Use the fail link to get to the next shorter prefix
Keep following fail links until you can advance

Failure link chase is amortized O(1) time, while other

steps are O(1) time.

1  b 

12

 a  b 

123

 a 

 a 

14

 b 

 b 

125

 a 

 a 

16

 b 

 b 
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KMP Algorithm

BuildAuto(P[1..m])

j = 0
for i = 1 to m do
fail[i] = j

while j > 0 and P[i] ̸= P[j] do
j = fail[j]

j ++

KMP(P[1..m], S[1..n])
j = 0;BuildAuto(P)
for i = 1 to n do
while j > 0 and S[i] ̸= P[j] do
j = fail[j]

j ++

if j > m then return i −m+ 1

Same algorithm as on previous slide, but avoids an explicit automaton.

Automaton state numbers are sequential, so use an integer var i to keep track of state.

Use another variable j to keep track of second largest matching prefix
Failure links are stored in the fail array.
So, BuildAuto only needs to construct this array.
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Multi-pattern Exact Search

Can we extend KMP to support multiple patterns?

Yes we can! It is called Aho-Corasick (AC) automaton
Note that AC algorithm was published before KMP!
Today, many systems use AC (e.g., grep, snort), but KMP, not so much.

KMP looks like a linear automaton plus failure links.
Aho-Corasick looks like a trie extended with failure links.
Failure links may go to a non-ancestor state

Failure link computations are similar

As with KMP, McNaughton-Yamada can build an automaton similar to AC.
One can understand Aho-Corasick as a specialization of McNaughton-Yamada,
Or, as a generalization of KMP.
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Aho-Corasick Automaton

As with KMP, we can think of AC as a specialization of MY.

Retain just the largest two numbers i and j in the pset.
Use the value of j as target for failure link, and to find j′ in the successor state’s pset
{j′, i + 1}

But there is an extra wrinkle:

With KMP, there is one pattern; we keep two positions from it.
With AC, we have many patterns, so a state’s pset contains positions from many patterns.
If many patterns share a prefix, the corresponding state includes all their next positions.
We can retain just (one of) the longest prefix(es).
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Aho-Corasick Example

Consider RE

(Σ0)∗(t1o2p3$4|too5l6$7|toot8h9$a

|pbecnd$e|of pgehni$j|ookz lem$n)

To reduce clutter, positions that

occur with previously numbered

positions are not explicitly

numbered, e.g., o’s in tooth (occurs

with the o’s in tool)

Figure omits failure links that go to

start state.

1

2

 t 

c

 p 

k

 o 

k3

 o 

l8

 o 

h4

 p 

7

 l 

29

 t 

kl

a

 h 

chd

 e 

e

 n 

 p  o 

di

 e 

ej

 n 

m

 z 

n

 e 

54 / 89



Intro RE FSA To DFA Trie grep Fingerprint Suffix trees Rabin-Karp Rolling Hashes Common Substring and rsync

Using arithmetic for exact matching

Problem: Given P[1..n] and S[1..m], find occurrences of P in S in O(n+m) time.

Idea: To simplify presentation, assume P, S range over [0-9]

Interpret P[1..n] as digits of a number

p = 10n−1P[1] + 10n−2P[2] + · · · 10n−nP[n]

Similarly, interpret S[i..(i + n− 1)] as the number si
Note: P is a substring of S at i iff p = si
To get si+1:
shift S[i] out of si : si+1 = si − 10n−1S[i]

shift in S[i + n]: si+1 = si+1 · 10+ S[i + n]

We have an O(n+m) algorithm. Almost: we still need to figure out how to operate
on n-digit numbers in constant time!
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Carter-Wegman-Rabin-Karp Algorithm
To avoid very large numbers, use computations modulo q for a fixed size q, say, 64-bits.

Use a random base r (instead of 10) and make q prime in order to minimize collisions

What is the likelihood of false matches?

We are treating P as a polynomial

p(x) =
n∑

i=1

P[n− i] · x i

A false match occurs when p(x) = si(x), or when p(x)− si(x) = 0.

Arithmetic modulo prime defines a field, so an (n− 1)th degree polynomial has n− 1 roots

i.e., (n− 1)/q of the q possible choices of x result in a false match.

Example: for n = 106 and 64-bit q, probability is just ≈ 10−15
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Rolling Hashes

CWRK is an example of a rolling hash:

Hash computed on text within a sliding window

Key point: Incremental computation of hash as the window slides.

Polynomial-based hashes are easy to compute incrementally:

ti+1 = (ti − xn−1T [i]) · x + T [i + n]

Complexity:

xn−1 is fixed once the window size is chosen

Takes just two multiplications, one modulo per symbol

O(m+ n) multiplication/modulo operations in total
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Other Rolling Hashes

In the past, multiplication/modulo were too expensive. (May still be true to some
extent and/or on some hardware.)

Use shifts, cyclic shifts, substitution maps and xor operations, avoiding
multiplications altogether

Need considerable research to find good fingerprinting functions.

Example: Adler32 — used in zlib (used everywhere) and rsync.

Al = 1+
l−1∑
k=0

ti+k mod 65521

B =
n∑

k=1

Ak = n+
n−1∑
k=0

(n− k)ti+k mod 65521

H = (B ≪ 16) + A
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Rolling Hash and Common Substring Problem

To find a common substring of length l or more
Compute rolling hashes of P and S with window size l
Takes O(n+m) time.

Store hashes from P in a hash table

For each rolling hash from S, check if it is in the table
Effectively, O(nm) comparisons, so expected number of collisions increases.
Unless collision probability is O(1/nm), expected runtime can be nonlinear

Can find longest common substring (LCS) using a binary-search like process, with a
total complexity of O((n+m) log(n+m))
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zlib/gzip, rsync, binary diff, etc.

rsync: Synchronizes directories across network
Need to minimize data transferred
A diff requires entire files to be copied to client side first!

Uses timestamps (or whole-file checksums) to detect unchanged files
For modified files, uses Adler-32 to identify modified regions
Find common substrings of certain length, say, 128-bytes

Relies on stronger MD-5 hash to verify unmodified regions

gzip: Uses rolling hash (Adler-32) to identify text that repeated from previous 32KB window
Repeating text can be replaced with a “pointer:” (offset, length).

Binary diff: Many programs such as xdelta and svn need to perform diffs on binaries; they too
rely on rolling hashes.
diff depends critically on line breaks, so does poorly on binaries
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Suffix Trees [Weiner 1973]

Versatile data structure: wide applications in string search, computational biology

“Compressed” trie of all suffixes of a string appended with “$”

Linear chains in the trie are compressed
Edges can now be substrings.
Each state has at least two children.

Leaves identify starting position of that suffix.

Key point: Can be constructed in linear time!

Supports sublinear exact match queries, and linear LCS queries

With linear-time preprocessing on the text (to build suffix tree),

yields better runtime than techniques discussed so far.

Applicable to single as well as multiple patterns or texts!
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Suffix Tree Example

Key Property Behind Suffix Trees

Substrings are prefixes of suffixes

Failure links used only during construction

Uses end-marker “$”

Leaves identify starting position of suffix

Typically, we preprocess the text, not the pattern.

Images from Wikipedia commons
79 / 89



Intro RE FSA To DFA Trie grep Fingerprint Suffix trees Overview Applications Suffix Arrays

Finding Substrings and Suffixes

Is p a substring of t?

Example: Is anan a substring of banana?

Solution:

Follow path labeled p from root of suffix tree for t .

If you fail along the way, then “no,” else “yes.”

p is a suffix if you reach a leaf at the end of p.

O(|p|) time, independent of |t| — great for large t .
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Counting # of Occurrences of p

How many times does “an” occur in t?

Solution:

Follow path labeled p from root of suffix tree for t .

Count the number of leaves below.

O(|p|) time if additional information (# of leaves
below) maintained at internal nodes.
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Self-LCS (Or, Longest Common Repeat)

What is the longest substring that repeats in t?

Solution:

Find the deepest non-leaf node with two or more
children!

In our example, it is ana.
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LC extension of i and j

Longest Common Extension

Longest common prefix of suffixes starting at i and j

Locate leaves labeled i and j.

Find their least common ancestor (LCA)

The string spelled out by the path from root to this
LCA is what we want.
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LCS with another string p

We can use the same procedure as LCR, if suffixes
of p were also included in the suffix tree

Leads to the notion of generalized suffix tree
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Generalized Suffix Trees

Suffix trees for multiple strings p1, ..., pn
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Generalized Suffix Tree: Applications

LCS of p and t : Build GST for s and t , find deepest node that has descendants
corresponding to s and t

LCS of p1, ..., pk : Build GST for p1 to pk , find deepest node that has descendants from
all of p1, ..., pn

Find strings in database containing q:

Build a suffix tree of all strings in the database
follow path that spells q
q occurs in every pi that appears below this node.
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Suffix Arrays [Manber and Myers 1989]

Drawbacks of suffix trees:
Multiple pointers per internal node: significant storage costs

Pointer-chasing is not cache-friendly

Suffix arrays address these drawbacks.
Requires same asymptotic storage (O(n)) but constant factors a lot smaller — 4x or so.
Instead of navigating down a path in the tree, relies on binary search
Increases asymptotic cost by O(log n), but can be faster in practice due to better cache
performance etc.
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Suffix Arrays

Construct a sorted array of suffixes, rather than tries

Can use 2 to 4 bytes per symbol

Use binary search to locate suffixes etc.

i Ti Ai TAi

1 mississippi$ 12 $
2 ississippi$ 11 i$
3 ssissippi$ 8 ippi$
4 sissippi$ 5 issippi$
5 issippi$ 2 ississippi$
6 ssippi$ 1 mississippi$
7 sippi$ 10 pi$
8 ippi$ 9 ppi$
9 ppi$ 7 sippi$
10 pi$ 4 sissippi$
11 i$ 6 ssippi$
12 $ 3 ssissippi$
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Finding Suffix Arrays
Maintaining LCP of successive suffixes speeds up algorithms

Search for substring p in O(|p|+ log |t|)
Count number of occurrences of p in O(|p|+ log |t|) time
Search for longest common repeat O(|t|) time

Use binary search to locate suffixes etc.

i Ti Ai TAi LCP
1 mississippi$ 12 $ ⊥
2 ississippi$ 11 i$ 0
3 ssissippi$ 8 ippi$ 1
4 sissippi$ 5 issippi$ 1
5 issippi$ 2 ississippi$ 4
6 ssippi$ 1 mississippi$ 0
7 sippi$ 10 pi$ 0
8 ippi$ 9 ppi$ 1
9 ppi$ 7 sippi$ 0
10 pi$ 4 sissippi$ 2
11 i$ 6 ssippi$ 1
12 $ 3 ssissippi$ 3
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