CSE 548: Algorithms

String Algorithms
R. Sekar

String Matching

Strings provide the primary means of interfacing to machines.

- programs, documents, ...

Consequently, string matching is central to numerous, widely-used systems and tools

- Compilers and interpreters, command processors (e.g., bash), text-processing tools (sed, awk, ...)
- Document searching and processing, e.g., grep, Google, NLP tools, ...
- Editors and word-processors
- File versioning and compression, e.g., rcs, svn, rsync, ...
- Network and system management, e.g., intrusion detection, performance monitoring, ...
- Computational biology, e.g., DNA alignment, mutations, evolutionary trees, ...

Topics

1. Intro	6. grep
Motivation	Using Derivatives
Background	KMP
2. RE	Aho-Corasick
Regular expressions	7. Fingerprint
3. FSA	Rabin-Karp
DFA and NFA	Rolling Hashes
4. To DFA	Common Substring and rsync
McNaughton-Yamada	8. Suffix trees
5. Trie	Overview
Tries	Applications
Suffix Arrays	

Terminology

String: List $S[1 . . i]$ of characters over an alphabet Σ.

Terminology

String: List $S[1 . . i]$ of characters over an alphabet Σ.
Substring: A string $P[1 . . j]$ such that for $P[1 . . j]=S[l+1 . . l+j]$ for some l.

Terminology

String: List $S[1 . . i]$ of characters over an alphabet Σ.
Substring: A string $P[1 . . j]$ such that for $P[1 . . j]=S[l+1 . . l+j]$ for some l.
Prefix: A substring P of S occurring at its beginning

Terminology

String: List $S[1 . . i]$ of characters over an alphabet Σ.
Substring: A string $P[1 . . j]$ such that for $P[1 . . j]=S[l+1 . . l+j]$ for some l.
Prefix: A substring P of S occurring at its beginning
Suffix: A substring P of S occurring at its end

Terminology

String: List $S[1 . . i]$ of characters over an alphabet Σ.
Substring: A string $P[1 . . j]$ such that for $P[1 . . j]=S[l+1 . . l+j]$ for some l.
Prefix: A substring P of S occurring at its beginning
Suffix: A substring P of S occurring at its end
Subsequence: Similar to substring, but the the elements of P need not occur contiguously in S.

For instance, $b c d$ is a substring of $a b c d e$, while $d e$ is a suffix, $a b c d$ is a prefix, and $a c d$ is a subsequence. A substring (or prefix/suffix/subsequence) T of S is said to be proper if $T \neq S$.

String Matching Problems

Given a "pattern" string p and another string s :
Exact match: Is p a substring of s ?
Match with wildcards: In this case, the pattern can contain wildcard characters that can match any character in s

Regular expression match: In this case, p is regular expression
Substring/prefix/suffix: Does a (sufficiently long) substring/prefix/suffix of p occur in s ?
Approximate match: Is there a substring of s that is within a certain edit distance from p ?
Multi-match: Instead of a single pattern, you are given a set $p_{1}, . ., p_{n}$ of patterns. Applies to all above problems.

String Matching Techniques

Finite-automata and variants: Regexp matching, Knuth-Morris-Pratt, Aho-Corasick Seminumerical Techniques: Shift-and, Shift-and with errors, Rabin-Karp, Hash-based Suffix trees and suffix arrays: Techniques for finding substrings, suffixes, etc.

Language of Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet Σ.
Let R be the set of all regular expressions over Σ. Then, Empty String $: \epsilon \in R$

Unit Strings : $\alpha \in \Sigma \Rightarrow \alpha \in R$
Concatenation : $r_{1}, r_{2} \in R \Rightarrow r_{1} r_{2} \in R$
Alternative : $r_{1}, r_{2} \in R \Rightarrow\left(r_{1} \mid r_{2}\right) \in R$
Kleene Closure $: r \in R \Rightarrow r^{*} \in R$

Regular Expression

$a:$ stands for the set of strings $\{a\}$
$a \mid b:$ stands for the set $\{\mathrm{a}, \mathrm{b}\}$

- Union of sets corresponding to REs a and b
$a b:$ stands for the set $\{a b\}$
- Analogous to set product on REs for a and b
- $(a \mid b)(a \mid b)$: stands for the set $\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\}$.
a^{*} : stands for the set $\{\epsilon, \mathrm{a}$, aa, aaa,$\ldots\}$ that contains all strings of zero or more a's.
- Analogous to closure of the product operation.

Regular Expression Examples

$(a \mid b)^{*}$: Set of strings with zero or more a's and zero or more b's:
$\{\epsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}$
$\left(a^{*} b^{*}\right)$: Set of strings with zero or more a's and zero or more b's such that all a's occur before any b:
$\{\epsilon, a, b, a a, a b, b b, a a a, a a b, a b b, \ldots\}$
$\left(a^{*} b^{*}\right)^{*}$: Set of strings with zero or more a's and zero or more b's:
$\{\epsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}$

Semantics of Regular Expressions

Semantic Function \mathcal{L} : Maps regular expressions to sets of strings.

$$
\begin{aligned}
\mathcal{L}(\epsilon) & =\{\epsilon\} \\
\mathcal{L}(\alpha) & =\{\alpha\} \quad(\alpha \in \Sigma) \\
\mathcal{L}\left(r_{1} \mid r_{2}\right) & =\mathcal{L}\left(r_{1}\right) \cup \mathcal{L}\left(r_{2}\right) \\
\mathcal{L}\left(r_{1} r_{2}\right) & =\mathcal{L}\left(r_{1}\right) \cdot \mathcal{L}\left(r_{2}\right) \\
\mathcal{L}\left(r^{*}\right) & =\{\epsilon\} \cup\left(\mathcal{L}(r) \cdot \mathcal{L}\left(r^{*}\right)\right)
\end{aligned}
$$

Finite State Automata

Regular expressions are used for specification, while FSA are used for computation. FSAs are represented by a labeled directed graph.

- A finite set of states (vertices).
- Transitions between states (edges).
- Labels on transitions are drawn from $\Sigma \cup\{\epsilon\}$.
- One distinguished start state.
- One or more distinguished final states.

Finite State Automata: An Example

Consider the Regular Expression (a|b)*a(a|b). $\mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right)=\{\mathrm{aa}, \mathrm{ab}, \mathrm{aaa}, \mathrm{aab}, \mathrm{baa}, \mathrm{bab}$, aaaa, aaab, abaa, abab, baaa, ...\}.
The following (non-deterministic) automaton determines whether an input string belongs to $\mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right.$:

Determinism

$(a \mid b)^{*} a(a \mid b):$

Nondeterministic: (NFA)

Deterministic:
(DFA)

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x
... if beginning from the start state
... we can trace some path through the automaton
... such that the sequence of edge labels spells x
... and end in a final state.

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x
... if beginning from the start state
... we can trace some path through the automaton
... such that the sequence of edge labels spells x
... and end in a final state.
Or, there exists a path in the graph from the start state to a final state such that the sequence of labels on the path spells out x

Recognition with an NFA

Is $\underline{a b a b} \in \mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right)$?

Input: $\quad a \quad b$ a b
Path 1: 111111
Path 2: 111123 Accept
Path 3: $123 \perp$

Accept

Recognition with a DFA

Is $\underline{a b a b} \in \mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right)$?

$\begin{array}{lllllll}\text { Input: } & & a & b & a & b & \\ \text { Path: } & 1 & 2 & 4 & 2 & 4 & \text { Accept }\end{array}$

NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

- NFA may have transitions labeled by ϵ.
(Spontaneous transitions)
- All transition labels in a DFA belong to Σ.
- For some string x, there may be many accepting paths in an NFA.
- For all strings x, there is one unique accepting path in a DFA.
- Usually, an input string can be recognized faster with a DFA.
- NFAs are typically smaller than the corresponding DFAs.

NFA vs. DFA

$n=$ Size of Regular Expression (pattern)
$m=$ Length of Input String (subject)

	NFA	DFA
Size of Automaton	$O(n)$	$O\left(2^{n}\right)$
Recognition time per input string	$O(n \times m)$	$O(m)$

Converting RE to FSA

NFA: Compile RE to NFA (Thompson's construction [1968]), then match.
DFA: Compile to DFA, then match
(A) Convert NFA to DFA (Rabin-Scott construction), minimize
(B) Direct construction: RE derivatives [Brzozowski 1964].

- More convenient and a bit more general than (A).
(C) Direct construction of [McNaughton Yamada 1960]
- Can be seen as a (more easily implemented) specialization of (B).
- Used in Lex and its derivatives, i.e., most compilers use this algorithm.

Converting RE to FSA

- NFA approach takes $O(n)$ NFA construction plus $O(n m)$ matching, so has worst case $O(n m)$ complexity.
- DFA approach takes $O\left(2^{n}\right)$ construction plus $O(m)$ match, so has worst case $O\left(2^{n}+m\right)$ complexity.
- So, why bother with DFA?
- In many practical applications, the pattern is fixed and small, while the subject text is very large. So, the $O(m n)$ term is dominant over $O\left(2^{n}\right)$
- For many important cases, DFAs are of polynomial size
- In many applications, exponential blow-ups don't occur, e.g., compilers.

McNaughton-Yamada Construction

- Positions in RE are numbered, e.g., ${ }^{0}\left(a^{1} \mid b^{2}\right) * a^{3}\left(a^{4} \mid b^{5}\right) \6.
- RE suffix that remains to be matched is identified by its start position
- Or more generally, a set of suffixes is identified by a set of positions
- Each DFA state corresponds to a position set (pset)

$$
\begin{aligned}
R_{1} & \equiv\{1,2,3\} \\
R_{2} & \equiv\{1,2,3,4,5\} \\
R_{3} & \equiv\{1,2,3,4,5,6\} \\
R_{4} & \equiv\{1,2,3,6\}
\end{aligned}
$$

McNaughton-Yamada: Definitions

- @ (R, p) : symbol at position p in R

Example for $R=\left(a^{1} \mid b^{2}\right) * a^{3}\left(a^{4} \mid b^{5}\right) \$^{6}: @(R, 1)=a, @(R, 5)=b$.

- filter $(R, P, s):\{p \in P \mid @(R, p)=s\}$

Example: $\operatorname{filter}(R,\{1,2,3\}, a)=\{1,3\}$

$$
\text { filter }(R,\{1,2,4,5\}, b)=\{2,5\}
$$

- first (R) : First positions in R

$$
\begin{aligned}
\text { first }(a) & =\operatorname{pos}(a) \\
\operatorname{first}\left(R_{1} \mid R_{2}\right) & =\operatorname{first}\left(R_{1}\right) \cup \text { first }\left(R_{2}\right) \\
\operatorname{first}\left(R_{1} \cdot R_{2}\right) & =\operatorname{first}\left(R_{1}\right), \text { if } R_{1} \text { doesn't match } \epsilon \\
\operatorname{first}\left(R_{1} \cdot R_{2}\right) & =\operatorname{first}\left(R_{1}\right) \cup \text { first }\left(R_{2}\right), \text { otherwise } \\
\operatorname{first}\left(R_{*}\right) & =\operatorname{first}(R)
\end{aligned}
$$

McNaughton-Yamada: Definitions (Continued)

- follow (R, p) : Positions immediately following p in R.

$$
\begin{aligned}
\text { follow }\left(R_{1} \cdot R_{2}, p\right) & \supseteq \text { first }\left(R_{2}\right), \text { if } p \text { is rightmost in } R_{1} \\
\text { follow }\left(R_{*}, p\right) & \supseteq \text { first }(R) \text {, if } p \text { is rightmost in } R
\end{aligned}
$$

Example for $R=\left(a^{1} \mid b^{2}\right) * a^{3}\left(a^{4} \mid b^{5}\right) \6 :

$$
\begin{aligned}
& \text { follow }(R, 1)=\{1,2,3\} \\
& \text { follow }(R, 2)=\{1,2,3\} \\
& \text { follow }(R, 3)=\{4,5\} \\
& \text { follow }(R, 4)=\{6\}
\end{aligned}
$$

- follow $(R, P): \bigcup_{p \in P}$ follow (R, p)

Example: follow $(R,\{3,4\})=\{4,5,6\}$

McNaughton-Yamada Algorithm

BuildMY(R, P)

Create an automaton state S labeled P
Mark this state as final if $\$ \in @(R, P)$
foreach symbol $a \in @(R, P)-\{\$\}$ do
Call BuildMY(R, follow $(R$, filter $(R, P, a))$ if hasn't previously been called Create a transition on a from S to the root of this subautomaton

DFA construction begins with the call BuildMY $(R$, follow $(\{0\}))$. The root of the resulting automaton is marked as a start state.

BuildMY Illustration on $R={ }^{0}\left(a^{1} \mid b^{2}\right) * a^{3}\left(a^{4} \mid b^{5}\right) \6

Computations Needed

$$
\begin{aligned}
& \text { follow }(\{0\})=\{1,2,3\} \\
& \text { follow }(\{1\})=\text { follow }(\{2\})=\{1,2,3\} \\
& \text { follow }(\{3\})=\{4,5\} \\
& \text { follow }(\{4\})=\text { follow }(\{5\})=\{6\}
\end{aligned}
$$

filter $(\{1,2,3\}, a)=\{1,3\}$, filter $(\{1,2,3\}, b)=\{2\}$
follow $(\{1,3\})=\{1,2,3,4,5\}$

$$
\begin{aligned}
& \text { filter }(\{1,2,3,4,5\}, a)=\{1,3,4\} \\
& \text { filter }(\{1,2,3,4,5\}, b)=\{2,5\} \\
& \text { follow }(\{1,3,4\})=\{1,2,3,4,5,6\} \\
& \text { follow }(\{2,5\})=\{1,2,3,6\}
\end{aligned}
$$

$$
\text { filter }(\{1,2,3,4,5,6\}, a)=\{1,3,4\}
$$

$$
\text { filter }(\{1,2,3,4,5,6\}, b)=\{2,5\}
$$

$$
\text { filter }(\{1,2,3,6\}, a)=\{1,3\} \text { filter }(\{1,2,3,6\}, b)=\{2\}
$$

Resulting Automaton

RE Matching: Summary

- Regular expression matching is much more powerful than matching on plain strings (e.g., prefix, suffix, substring, etc.)
- Natural that RE matching algorithms can be used to solve plain string matching
- But usually, you pay for increased power: more complex algorithms, larger runtimes or storage.

> We study the RE approach because it seems to not only do RE matching, but yield simpler, more efficient algorithms for matching plain strings.

String Lookup (Not Search)

Problem: Determine if s equals any of the strings p_{1}, \ldots, p_{k}.

- Equivalent to the question: does the RE $p_{1}\left|p_{2}\right| \cdots \mid p_{k}$ match s ?
- Results in an FSA that is a tree
- More commonly known as a trie
- We can use BuildMY.
- But since the construction is obvious, we won't.

Trie Example

Trie Summary

- A data structure for efficient lookup
- Construction time linear in the size of keywords
- Search time linear in the size of the input string
- Can also support maximal common prefix (MCP) query
- Can also be used for efficient representation of string sets
- Takes $O(|s|)$ time to check if s belongs to the set
- Set union/intersection are linear in size of the smaller set
- Sublinear in input size when one input trie is much larger than the other
- Can compute set difference as well - with same complexity.

Implementing Transitions

How to implement transitions?
Array: Efficient, but unacceptable space when $|\Sigma|$ is large
Linked list: Space-efficient, but slow
Hash tables: Mid-way between the above two options, but noticeably slower than arrays. Collisions are a concern.

- But customized hash tables for this purpose can be developed.
- Alternatively, since transition tables are static, we can look for perfect hash functions

Specialized representations: For special cases such as exact search, we could develop specialized alternatives that are more efficient than all of the above.

Exact Search

- Determine if a pattern $P[1 . . n]$ occurs within subject $S[1 . . m]$
- Find j such that $P[1 . . n]=S[j . .(j+n-1)]$
- An RE matching problem: Does $\Sigma^{*} P \sum^{*}$ match S ?
- Note: Σ^{*} matches any arbitrary string (incl. ϵ)
- We consider $\Sigma^{*} p$ since it can identify all matches
- A match can be reported each time a final state is reached.
- In contrast, an automaton for $\Sigma^{*} P \Sigma^{*}$ may not report all matches

Exact Search Example

Consider $R_{0}=\left(\Sigma^{0}\right)^{*} a^{1} a^{2} b^{3} a^{4} b^{5} a^{6} a^{7} \8
We use McNaughton-Yamada. Recall that:

- States are identified by position sets.
- A position j denotes:
- a match for the pattern prefix upto but not including j, or
- the need to match pattern suffix starting at j in order to complete the match.

For instance, position set $\{0,2,3\}$ means that we have so far matched ϵ, a and $a a$.

- Or equivalently, $\Sigma^{*}, \Sigma^{*} a$ and $\Sigma^{*} a a$.

Exact Search: Complexity

- Positives:

- Matching is very fast, taking only $O(m)$ time.
- Only linear (rather than exponential) number of states.
- Downsides:
- Construction of psets for each state takes up to $O(n)$ time
- Thus, overall complexity of automata construction is $O\left(n^{2}\right)$ rather than $O(n)$.
- Upto $|\Sigma|$ transitions per state
- Automaton size is $O(n|\Sigma|)$ rather than $O(n)$.
- Question: Can we do better?

Improving Exact Search: Observations

The DFA has a linear structure, with states 0 to n :

- State i is reached on matching the pattern prefix $P[1 . . i]$
- pset (i) identifies all viable prefix matches of P
- i.e., $\forall j \in \operatorname{pset}(i), P[1 . . j]$ matches a subject suffix.

	a	a	b	a	b	a	a	$\ldots \ldots .$.
Viable match 1	a^{1}	a^{2}	b^{3}	a^{4}	b^{5}	a^{6}	a^{7}	$\8
Viable match 2	Σ	Σ	Σ	Σ	Σ	a^{1}	a^{2}	b^{3}
Viable match 3	Σ	Σ	Σ	Σ	Σ	Σ	a^{1}	a^{2}
Viable match 4	Σ	a^{1}						

Improving Exact Search: Key Ideas

Main Idea

- Remember only the second largest j in $p s e t(i)$
- You can look at $p s e t(j)$ for the next smaller prefix
- Add failure links from state i to j for this purpose
- Two positions per pset $\Longrightarrow O(n)$ construction time
- Failure links eliminate the need for all backward transitions
- Go to j and take forward transitions from there.
- One forward and failure transition pset $\Longrightarrow O(n)$ size

Exact Search: KMP Automaton

- Only two positions per state: $\{j, i\}$
- Two trans per state: forward and fail
- If the symbol at both positions is the same, then the next state has the pset $\{j+1, i+1\}$

Exact Search: KMP Automaton

- Only two positions per state: $\{j, i\}$
- Two trans per state: forward and fail
- If the symbol at both positions is the same, then the next state has the pset $\{j+1, i+1\}$
- Otherwise, the match at j cannot advance on the symbol at i.

Exact Search: KMP Automaton

- Only two positions per state: $\{j, i\}$
- Two trans per state: forward and fail
- If the symbol at both positions is the same, then the next state has the pset $\{j+1, i+1\}$
- Otherwise, the match at j cannot advance on the symbol at i.
- Use the fail link to get to the next shorter prefix

Exact Search: KMP Automaton

- Only two positions per state: $\{j, i\}$
- Two trans per state: forward and fail
- If the symbol at both positions is the same, then the next state has the pset $\{j+1, i+1\}$
- Otherwise, the match at j cannot advance on the symbol at i.
- Use the fail link to get to the next shorter prefix
- Keep following fail links until you can advance

Exact Search: KMP Automaton

- Only two positions per state: $\{j, i\}$
- Two trans per state: forward and fail
- If the symbol at both positions is the same, then the next state has the pset $\{j+1, i+1\}$
- Otherwise, the match at j cannot advance on the symbol at i.
- Use the fail link to get to the next shorter prefix
- Keep following fail links until you can advance
- Failure link chase is amortized $O(1)$ time, while other steps are $O(1)$ time.

KMP Algorithm

BuildAuto $(P[1 . . m])$	$K M P(P[1 . . m], S[1 . . n])$
$j=0$	
for $i=1$ to m do	for $i=1=1$ to \underline{n} do
fail $[i]=j$	while $j>0$ and $S[i] \neq P[j]$ do
while $j>0$ and $P[i] \neq P[j]$ do	$j=$ fail $[j]$
$j=$ fail $[j]$	$j++$
$j++$	if $j>m$ then return $i-m+1$

- Same algorithm as on previous slide, but avoids an explicit automaton.
- Automaton state numbers are sequential, so use an integer var i to keep track of state.
- Use another variable j to keep track of second largest matching prefix
- Failure links are stored in the fail array.
- So, BuildAuto only needs to construct this array.

Multi-pattern Exact Search

- Can we extend KMP to support multiple patterns?

Multi-pattern Exact Search

- Can we extend KMP to support multiple patterns?
- Yes we can! It is called Aho-Corasick (AC) automaton
- Note that AC algorithm was published before KMP!
- Today, many systems use AC (e.g., grep, snort), but KMP, not so much.

Multi-pattern Exact Search

- Can we extend KMP to support multiple patterns?
- Yes we can! It is called Aho-Corasick (AC) automaton
- Note that AC algorithm was published before KMP!
- Today, many systems use AC (e.g., grep, snort), but KMP, not so much.
- KMP looks like a linear automaton plus failure links.
- Aho-Corasick looks like a trie extended with failure links.
- Failure links may go to a non-ancestor state

Multi-pattern Exact Search

- Can we extend KMP to support multiple patterns?
- Yes we can! It is called Aho-Corasick (AC) automaton
- Note that AC algorithm was published before KMP!
- Today, many systems use AC (e.g., grep, snort), but KMP, not so much.
- KMP looks like a linear automaton plus failure links.
- Aho-Corasick looks like a trie extended with failure links.
- Failure links may go to a non-ancestor state
- Failure link computations are similar

Multi-pattern Exact Search

- Can we extend KMP to support multiple patterns?
- Yes we can! It is called Aho-Corasick (AC) automaton
- Note that AC algorithm was published before KMP!
- Today, many systems use AC (e.g., grep, snort), but KMP, not so much.
- KMP looks like a linear automaton plus failure links.
- Aho-Corasick looks like a trie extended with failure links.
- Failure links may go to a non-ancestor state
- Failure link computations are similar
- As with KMP, McNaughton-Yamada can build an automaton similar to AC.

Multi-pattern Exact Search

- Can we extend KMP to support multiple patterns?
- Yes we can! It is called Aho-Corasick (AC) automaton
- Note that AC algorithm was published before KMP!
- Today, many systems use AC (e.g., grep, snort), but KMP, not so much.
- KMP looks like a linear automaton plus failure links.
- Aho-Corasick looks like a trie extended with failure links.
- Failure links may go to a non-ancestor state
- Failure link computations are similar
- As with KMP, McNaughton-Yamada can build an automaton similar to AC.
- One can understand Aho-Corasick as a specialization of McNaughton-Yamada,
- Or, as a generalization of KMP.

Aho-Corasick Automaton

- As with KMP, we can think of AC as a specialization of MY.
- Retain just the largest two numbers i and j in the pset.
- Use the value of j as target for failure link, and to find j^{\prime} in the successor state's pset $\left\{j^{\prime}, i+1\right\}$
- But there is an extra wrinkle:
- With KMP, there is one pattern; we keep two positions from it.
- With AC, we have many patterns, so a state's pset contains positions from many patterns.
- If many patterns share a prefix, the corresponding state includes all their next positions.
- We can retain just (one of) the longest prefix(es).

Aho-Corasick Example

Consider RE

$$
\begin{gathered}
\left(\Sigma^{0}\right)^{*}\left(t^{1} o^{2} p^{3} \$^{4} \mid \text { too }^{5} l^{6} \$^{7} \mid \text { toot }^{8} h^{9} \$^{a}\right. \\
\left.\left|p^{b} e^{c} n^{d} \$^{e}\right| \sigma^{f} p^{g} e^{h} n^{i} \$ j \mid o o^{k} z^{l} e^{m} \$^{n}\right)
\end{gathered}
$$

- To reduce clutter, positions that occur with previously numbered positions are not explicitly numbered, e.g., o's in tooth (occurs with the o's in tool)
- Figure omits failure links that go to start state.

Using arithmetic for exact matching

Problem: Given $P[1 \ldots n]$ and $S[1 \ldots m]$, find occurrences of P in S in $O(n+m)$ time.

Using arithmetic for exact matching

Problem: Given $P[1 . . n]$ and $S[1 . . m]$, find occurrences of P in S in $O(n+m)$ time.
Idea: To simplify presentation, assume P, S range over [0-9]

Using arithmetic for exact matching

Problem: Given $P[1 . . n]$ and $S[1 . . m]$, find occurrences of P in S in $O(n+m)$ time.
Idea: To simplify presentation, assume P, S range over [0-9]

- Interpret $P[1 . . n]$ as digits of a number

$$
p=10^{n-1} P[1]+10^{n-2} P[2]+\cdots 10^{n-n} P[n]
$$

- Similarly, interpret $S[i . .(i+n-1)]$ as the number s_{i}

Using arithmetic for exact matching

Problem: Given $P[1 . . n]$ and $S[1 . . m]$, find occurrences of P in S in $O(n+m)$ time.
Idea: To simplify presentation, assume P, S range over [0-9]

- Interpret $P[1 . . n]$ as digits of a number

$$
p=10^{n-1} P[1]+10^{n-2} P[2]+\cdots 10^{n-n} P[n]
$$

- Similarly, interpret $S[i . .(i+n-1)]$ as the number s_{i}
- Note: P is a substring of S at i iff $p=s_{i}$

Using arithmetic for exact matching

Problem: Given $P[1 . . n]$ and $S[1 . . m]$, find occurrences of P in S in $O(n+m)$ time.
Idea: To simplify presentation, assume P, S range over [0-9]

- Interpret $P[1 . . n]$ as digits of a number

$$
p=10^{n-1} P[1]+10^{n-2} P[2]+\cdots 10^{n-n} P[n]
$$

- Similarly, interpret $S[i . .(i+n-1)]$ as the number s_{i}
- Note: P is a substring of S at i iff $p=s_{i}$
- To get s_{i+1} :
- shift $S[i]$ out of $s_{i}: s_{i+1}=s_{i}-10^{n-1} S[i]$
- shift in $S[i+n]: s_{i+1}=s_{i+1} \cdot 10+S[i+n]$

Using arithmetic for exact matching

Problem: Given $P[1 . . n]$ and $S[1 . . m]$, find occurrences of P in S in $O(n+m)$ time.
Idea: To simplify presentation, assume P, S range over [0-9]

- Interpret $P[1 . . n]$ as digits of a number

$$
p=10^{n-1} P[1]+10^{n-2} P[2]+\cdots 10^{n-n} P[n]
$$

- Similarly, interpret $S[i . .(i+n-1)]$ as the number s_{i}
- Note: P is a substring of S at i iff $p=s_{i}$
- To get s_{i+1} :
- shift $S[i]$ out of $s_{i}: s_{i+1}=s_{i}-10^{n-1} S[i]$
- shift in $S[i+n]: s_{i+1}=s_{i+1} \cdot 10+S[i+n]$

We have an $O(n+m)$ algorithm. Almost: we still need to figure out how to operate on n-digit numbers in constant time!

Carter-Wegman-Rabin-Karp Algorithm

- To avoid very large numbers, use computations modulo q for a fixed size q, say, 64-bits.
- Use a random base r (instead of 10) and make q prime in order to minimize collisions

Carter-Wegman-Rabin-Karp Algorithm

- To avoid very large numbers, use computations modulo q for a fixed size q, say, 64-bits.
- Use a random base r (instead of 10) and make q prime in order to minimize collisions What is the likelihood of false matches?

Carter-Wegman-Rabin-Karp Algorithm

- To avoid very large numbers, use computations modulo q for a fixed size q, say, 64-bits.
- Use a random base r (instead of 10) and make q prime in order to minimize collisions

What is the likelihood of false matches?

- We are treating P as a polynomial

$$
p(x)=\sum_{i=1}^{n} P[n-i] \cdot x^{i}
$$

Carter-Wegman-Rabin-Karp Algorithm

- To avoid very large numbers, use computations modulo q for a fixed size q, say, 64-bits.
- Use a random base r (instead of 10) and make q prime in order to minimize collisions

What is the likelihood of false matches?

- We are treating P as a polynomial

$$
p(x)=\sum_{i=1}^{n} P[n-i] \cdot x^{i}
$$

- A false match occurs when $p(x)=s_{i}(x)$, or when $p(x)-s_{i}(x)=0$.
- Arithmetic modulo prime defines a field, so an $(n-1)$ th degree polynomial has $n-1$ roots
- i.e., $(n-1) / q$ of the q possible choices of x result in a false match.
- Example: for $n=10^{6}$ and 64 -bit q, probability is just $\approx 10^{-15}$

Rolling Hashes

CWRK is an example of a rolling hash:

- Hash computed on text within a sliding window

Rolling Hashes

CWRK is an example of a rolling hash:

- Hash computed on text within a sliding window
- Key point: Incremental computation of hash as the window slides.

Polynomial-based hashes are easy to compute incrementally:

$$
t_{i+1}=\left(t_{i}-x^{n-1} T[i]\right) \cdot x+T[i+n]
$$

Rolling Hashes

CWRK is an example of a rolling hash:

- Hash computed on text within a sliding window
- Key point: Incremental computation of hash as the window slides.

Polynomial-based hashes are easy to compute incrementally:

$$
t_{i+1}=\left(t_{i}-x^{n-1} T[i]\right) \cdot x+T[i+n]
$$

Complexity:

- x^{n-1} is fixed once the window size is chosen

Rolling Hashes

CWRK is an example of a rolling hash:

- Hash computed on text within a sliding window
- Key point: Incremental computation of hash as the window slides.

Polynomial-based hashes are easy to compute incrementally:

$$
t_{i+1}=\left(t_{i}-x^{n-1} T[i]\right) \cdot x+T[i+n]
$$

Complexity:

- x^{n-1} is fixed once the window size is chosen
- Takes just two multiplications, one modulo per symbol
- $O(m+n)$ multiplication/modulo operations in total

Other Rolling Hashes

In the past, multiplication/modulo were too expensive. (May still be true to some extent and/or on some hardware.)

- Use shifts, cyclic shifts, substitution maps and xor operations, avoiding multiplications altogether
- Need considerable research to find good fingerprinting functions.
- Example: Adler32 - used in zlib (used everywhere) and rsync.

$$
\begin{gathered}
A_{l}=1+\sum_{k=0}^{l-1} t_{i+k} \bmod 65521 \\
B=\sum_{k=1}^{n} A_{k}=n+\sum_{k=0}^{n-1}(n-k) t_{i+k} \bmod 65521 \\
H=(B \ll 16)+A
\end{gathered}
$$

Rolling Hash and Common Substring Problem

- To find a common substring of length l or more
- Compute rolling hashes of P and S with window size l
- Takes $O(n+m)$ time.
- Store hashes from P in a hash table
- For each rolling hash from S, check if it is in the table
- Effectively, $O(n m)$ comparisons, so expected number of collisions increases.
- Unless collision probability is $O(1 / n m)$, expected runtime can be nonlinear
- Can find longest common substring (LCS) using a binary-search like process, with a total complexity of $O((n+m) \log (n+m))$

zlib/gzip, rsync, binary diff, etc.

rsync: Synchronizes directories across network

- Need to minimize data transferred
- A diff requires entire files to be copied to client side first!

zlib/gzip, rsync, binary diff, etc.

rsync: Synchronizes directories across network

- Need to minimize data transferred
- A diff requires entire files to be copied to client side first!
- Uses timestamps (or whole-file checksums) to detect unchanged files
- For modified files, uses Adler-32 to identify modified regions
- Find common substrings of certain length, say, 128-bytes
- Relies on stronger MD-5 hash to verify unmodified regions

zlib/gzip, rsync, binary diff, etc.

rsync: Synchronizes directories across network

- Need to minimize data transferred
- A diff requires entire files to be copied to client side first!
- Uses timestamps (or whole-file checksums) to detect unchanged files
- For modified files, uses Adler-32 to identify modified regions
- Find common substrings of certain length, say, 128-bytes
- Relies on stronger MD-5 hash to verify unmodified regions
gzip: Uses rolling hash (Adler-32) to identify text that repeated from previous 32 KB window - Repeating text can be replaced with a "pointer:" (offset, length).

zlib/gzip, rsync, binary diff, etc.

rsync: Synchronizes directories across network

- Need to minimize data transferred - A diff requires entire files to be copied to client side first!
- Uses timestamps (or whole-file checksums) to detect unchanged files
- For modified files, uses Adler-32 to identify modified regions
- Find common substrings of certain length, say, 128-bytes
- Relies on stronger MD-5 hash to verify unmodified regions
gzip: Uses rolling hash (Adler-32) to identify text that repeated from previous 32 KB window - Repeating text can be replaced with a "pointer:" (offset, length).

Binary diff: Many programs such as xdelta and svn need to perform diffs on binaries; they too rely on rolling hashes.

- diff depends critically on line breaks, so does poorly on binaries

Suffix Trees [Weiner 1973]

- Versatile data structure: wide applications in string search, computational biology
- "Compressed" trie of all suffixes of a string appended with "\$"

Suffix Trees [Weiner 1973]

- Versatile data structure: wide applications in string search, computational biology
- "Compressed" trie of all suffixes of a string appended with "\$"
- Linear chains in the trie are compressed
- Edges can now be substrings.
- Each state has at least two children.
- Leaves identify starting position of that suffix.
- Key point: Can be constructed in linear time!

Suffix Trees [Weiner 1973]

- Versatile data structure: wide applications in string search, computational biology
- "Compressed" trie of all suffixes of a string appended with "\$"
- Linear chains in the trie are compressed
- Edges can now be substrings.
- Each state has at least two children.
- Leaves identify starting position of that suffix.
- Key point: Can be constructed in linear time!
- Supports sublinear exact match queries, and linear LCS queries
- With linear-time preprocessing on the text (to build suffix tree),
- yields better runtime than techniques discussed so far.

Suffix Trees [Weiner 1973]

- Versatile data structure: wide applications in string search, computational biology
- "Compressed" trie of all suffixes of a string appended with "\$"
- Linear chains in the trie are compressed
- Edges can now be substrings.
- Each state has at least two children.
- Leaves identify starting position of that suffix.
- Key point: Can be constructed in linear time!
- Supports sublinear exact match queries, and linear LCS queries
- With linear-time preprocessing on the text (to build suffix tree),
- yields better runtime than techniques discussed so far.
- Applicable to single as well as multiple patterns or texts!

Suffix Tree Example

Key Property Behind Suffix Trees

Substrings are prefixes of suffixes

- Failure links used only during construction
- Uses end-marker "\$"
- Leaves identify starting position of suffix
- Typically, we preprocess the text, not the pattern.

Finding Substrings and Suffixes

Is p a substring of t ?
Example: Is anan a substring of banana?

Solution:

- Follow path labeled p from root of suffix tree for t.
- If you fail along the way, then "no," else "yes."
- p is a suffix if you reach a leaf at the end of p.
- $O(|p|)$ time, independent of $|t|-$ great for large t.

Counting \# of Occurrences of p

How many times does "an" occur in t ?

Solution:

- Follow path labeled p from root of suffix tree for t.
- Count the number of leaves below.
- $O(|p|)$ time if additional information (\# of leaves below) maintained at internal nodes.

Self-LCS (Or, Longest Common Repeat)

What is the longest substring that repeats in t ?

Solution:

- Find the deepest non-leaf node with two or more children!
- In our example, it is ana.

LC extension of i and j

Longest Common Extension

Longest common prefix of suffixes starting at i and j

- Locate leaves labeled i and j.
- Find their least common ancestor (LCA)
- The string spelled out by the path from root to this LCA is what we want.

LCS with another string p

- We can use the same procedure as LCR, if suffixes of p were also included in the suffix tree
- Leads to the notion of generalized suffix tree

Generalized Suffix Trees

Suffix trees for multiple strings p_{1}, \ldots, p_{n}

Example. att, tag, gat
Simple solution:
(I) build suffix tree for string aat\#|tag\# ${ }_{2}$ gat $_{3}$
(2) For every leaf node, remove any text after the first \# symbol.

Generalized Suffix Tree: Applications

LCS of p and t : Build GST for s and t, find deepest node that has descendants corresponding to s and t

LCS of p_{1}, \ldots, p_{k} : Build GST for p_{1} to p_{k}, find deepest node that has descendants from all of p_{1}, \ldots, p_{n}

Find strings in database containing q :

- Build a suffix tree of all strings in the database
- follow path that spells q
- q occurs in every p_{i} that appears below this node.

Suffix Arrays [Manber and Myers 1989]

- Drawbacks of suffix trees:
- Multiple pointers per internal node: significant storage costs
- Pointer-chasing is not cache-friendly
- Suffix arrays address these drawbacks.
- Requires same asymptotic storage $(O(n))$ but constant factors a lot smaller -4 x or so.
- Instead of navigating down a path in the tree, relies on binary search
- Increases asymptotic cost by $O(\log n)$, but can be faster in practice due to better cache performance etc.

Suffix Arrays

- Construct a sorted array of suffixes, rather than tries
- Can use 2 to 4 bytes per symbol
- Use binary search to locate suffixes etc.

i	T_{i}	A_{i}	$T_{A_{i}}$
1	mississippi\$	12	$\$$
2	ississippi\$	11	i\$
3	ssissippi\$	8	ippi\$
4	sissippi\$	5	issippi\$
5	issippi\$	2	ississippi\$
6	ssippi\$	1	mississippi\$
7	sippi\$	10	pi\$
8	ippi\$	9	ppi\$
9	ppi\$	7	sippi\$
10	pi\$	4	sissippi\$
11	i\$	6	ssippi\$
12	$\$$	3	ssissippi\$

Finding Suffix Arrays

- Maintaining LCP of successive suffixes speeds up algorithms
- Search for substring p in $O(|p|+\log |t|)$
- Count number of occurrences of p in $O(|p|+\log |t|)$ time
- Search for longest common repeat $O(|t|)$ time

i	T_{i}	A_{i}	$T_{A_{i}}$	LCP
1	mississippi\$	12	$\$$	\perp
2	ississippi\$	11	i\$	0
3	ssissippi\$	8	ippi\$	1
4	sissippi\$	5	issippi\$	1
5	issippi\$	2	ississippi\$	4
6	ssippi\$	1	mississippi\$	0
7	sippi\$	10	pi\$	0
8	ippi\$	9	ppi\$	1
9	ppi\$	7	sippi\$	0
10	pi\$	4	sissippi\$	2
11	i\$	6	ssippi\$	1
12	$\$$	3	ssissippi\$	3

